期刊文献+

无界意义下的在线变化分位数回归算法(英文) 被引量:2

VARYING QUANTILE REGRESSION WITH ONLINE SCHEME AND UNBOUNDED SAMPLING
下载PDF
导出
摘要 本文研究了基于核方法下的在线变化损失函数的回归算法.利用迭代和比较原则,得到了算法的收敛速度,并将该结果推广到了更一般的输出空间. We consider a kernel-based online quantile regression algorithm associated with a sequence of insensitive pinball loss functions. By iteration method and comparison theorem, we obtain the error bound based on the more general output space.
作者 汪宝彬 殷红
出处 《数学杂志》 CSCD 北大核心 2014年第2期281-286,共6页 Journal of Mathematics
基金 Supported by by the Special Fund of Basic Scientific Research of Central Colleges(CZQ13015) the Teaching Research Fund of South-Central University for Nationalities(JYX13023)
关键词 分位数回归 Pinball损失函数 再生核希尔伯特空间 在线算法 quantile regression Pinball loss reproducing kernel Hilbert space online algorithm
  • 相关文献

参考文献6

  • 1Steinwart I, Christmann A. Estimating conditional quantiles with the help of the pinball loss [J] Bernoulli, 2011, 17: 211-225. 被引量:1
  • 2Xiang D H, Hu T, Zhou D X. Learning with varying insensitive loss [J]. Appl. Math. Letters, 2011 24: 2107-2109. 被引量:1
  • 3Guo Z C, Wang C. Online regression with unbound sampling [J]. Int. J. Comp. Approx., 2011, 14 2936-2941. 被引量:1
  • 4Ye G B, Zhou D X. Fully online classification by regularization [J]. Appl. Comput. Harmonic Anal. 2007, 23: 198-214. 被引量:1
  • 5Vapnik V. Statistical learning theory[M]. New York: Wiley, 1998. 被引量:1
  • 6Ying Y, Zhou D X. Online regularized classification algorithms[J]. IEEE Trans. Inform. Theory 2006, 52: 4775-4788. 被引量:1

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部