期刊文献+

基于近地高光谱与TM遥感影像的冬小麦冠层含水量反演 被引量:8

Inferred Water Content of Winter Wheat Based on Ground Hyperspectral and Remote Sensing Data of TM5
下载PDF
导出
摘要 为探讨利用近地高光谱和TM遥感影像数据评估作物冠层水分状况的可行性,以北京顺义通州为研究区域,以冬小麦为研究对象,首先基于Landsat TM5的光谱响应函数,利用地面实测的冬小麦全生育期冠层高光谱窄波段反射率数据来模拟TM5卫星宽波段反射率,然后利用模拟的TM5数据的NIR波段(第4波段)和2个SWIR波段(第5和7波段)反射率分别构建水分指数(WI)和归一化差异水分指数(NDWI),并利用地面实测数据建立冠层叶片含水量(LWC)和等效水厚度(EWT)的遥感估算模型,最后选取最优的水分估算模型,利用TM5卫星遥感影像数据对研究区域小麦冠层水分含量进行反演与应用。结果表明,利用TM5数据中SWIR第5波段比第7波段构建的水分指数更有优势;WI对估算LWC的效果较好,而NDWI在EWT估算方面效果较好,应用TM5宽波段模拟数据模型验证的冬小麦冠层含水量的r2和RMSE分别为0.57和0.51、3.89%和0.024。同时从TM遥感影像的反演结果来看,开花期的冬小麦冠层水分高于拔节期。 The objective of the study is to explore the feasibility of crop water status with hyper spectral and TM sensing data. Taking Shunyi and Tongzhou in Beijing as the study area in this paper. In order to monitor canopy water content of winter wheat, canopy spectrum of winter wheat with narrow-band were resampled to broad-band according to relative spectral response function of TM5 based on the measured ground spectral data during the whole stage of winter wheat. And then, typical water index WI (Water Index) and NDWI (Normalized Different Water Index) were estimated by NIR band and two SWIR bands (1 550-1 750 nm, 2 080-2 350 nm). The models of estimating LWC and EWT were established using the measured ground data. Finally, the optimal estimation model was chosen and combined with TM5 satellite remote sensing image data, the wheat canopy water content was estimated and applied in the study area. The results showed that the fifth band of TM5 was better than the seventh band in estimating canopy water content of winter wheat. Meanwhile, the relationship between LWC and WI was better, and the relationship between EWT and NDWI was better. And then LWC and EWT were estimated by using simulated data of TM5 at the whole stage with the r2 and RMSE being 0.57 and 0.51, 3.89% and 0.024, respectively. Meanwhile, winter wheat was higher at anthesis mote sensing data. stage than at jointing stage from the the canopy water content of inferred results of TM5 remote sensing data.
出处 《麦类作物学报》 CAS CSCD 北大核心 2014年第2期227-233,共7页 Journal of Triticeae Crops
基金 国家自然科学基金项目(41001244) 国家科技支撑计划项目(2012BAH29B04)
关键词 冬小麦 冠层光谱 TM遥感影像 冠层水分 Winter wheat Canopy spectrum TM5 Canopy water content
  • 相关文献

参考文献16

  • 1PanRc(潘瑞炽).PlantPhysiology(植物生理学)[M].Bei-jing:HigherEducationPress(北京:高等教育出版社),2004(inChinese). 被引量:1
  • 2Vivian Wing-Wah Yam.Preface[J].Science China Chemistry,2010,53(10):2077-2078. 被引量:2
  • 3Gao B. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sens- ing of Environment, 1996,58 : 257-266. 被引量:1
  • 4Penuulas J, Filella I, Biel C, et al. The reflectance at the 950- 970 nm region as an indicator of plant water status[J]. Inter- national Journal of Remote Sensing, 1993,14 : 1887-1905. 被引量:1
  • 5Penuulas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index (Rgoo/R97o)[]]. International Journal Remote Sensing, 1997,58 : 257-266. 被引量:1
  • 6Ceccato P, Goborn N, Flasse S, et al. Designing a spectral in- dex to estimate vegetation water content from remote sensing data:Part 1. Theoretical approach[J]. Remote Sensing of En- vironment ,2002,82(3) : 188-197. 被引量:1
  • 7Ceccato P, Flasse S, Gregoire J M. Designing a spectral index to estimate vegetation water content from remote sensing da- ta:Part 2. Validation and application[J]. Remote Sensing of Environment, 2002,82 (4) : 198-207. 被引量:1
  • 8Ceccato P, Flasse S, Tarantola S, et al. Detecting vegetation leaf water content using reflectance in the optical domain[J]. Remote Sensing of Environment, 2001,77 : 22-33. 被引量:1
  • 9Kiyaja V G,Reddy K R,Zhan D L. Deriving a simple spectral reflectance ratio to determine cotton leaf water potential[J]. Journal of News Seeds ,2007,8(3) :11-27. 被引量:1
  • 10Dawson T F,Curran P J, North P R J,et al. The propagation of foliar biochemical absorption features in forest canopy re- flectance : a theoretical analysis[J]. Remote Sensing of Envi- ronment, 1999,67: 147-159. 被引量:1

二级参考文献47

共引文献24

同被引文献126

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部