期刊文献+

Approximation by semigroup of spherical operators

Approximation by semigroup of spherical operators
原文传递
导出
摘要 This paper concerns about the approximation by a class of positive exponential type multiplier operators on the unit sphere Sn of the (n + 1)- dimensional Euclidean space for n ≥2. We prove that such operators form a strongly continuous contraction semigroup of class (l0) and show the equivalence between the approximation errors of these operators and the K-functionals. We also give the saturation order and the saturation class of these operators. As examples, the rth Boolean of the generalized spherical Abel-Poisson operator +Vt^γ and the rth Boolean of the generalized spherical Weierstrass operator +Wt^k for integer r ≥ 1 and reals γ, k∈ (0, 1] have errors ||+r Vt^γ- f||X ω^rγ(f, t^1/γ)X and ||+rWt^kf - f||X ω^2rk(f, t^1/(2k))X for all f ∈ X and 0 ≤t ≤2π, where X is the Banach space of all continuous functions or all L^p integrable functions, 1 ≤p ≤+∞, on S^n with norm ||·||X, and ω^s(f,t)X is the modulus of smoothness of degree s 〉 0 for f ∈X. Moreover, +r^Vt^γ and +rWt^k have the same saturation class if γ= 2k. This paper concerns about the approximation by a class of positive exponential type multiplier operators on the unit sphere Sn of the (n + 1)- dimensional Euclidean space for n ≥2. We prove that such operators form a strongly continuous contraction semigroup of class (l0) and show the equivalence between the approximation errors of these operators and the K-functionals. We also give the saturation order and the saturation class of these operators. As examples, the rth Boolean of the generalized spherical Abel-Poisson operator +Vt^γ and the rth Boolean of the generalized spherical Weierstrass operator +Wt^k for integer r ≥ 1 and reals γ, k∈ (0, 1] have errors ||+r Vt^γ- f||X ω^rγ(f, t^1/γ)X and ||+rWt^kf - f||X ω^2rk(f, t^1/(2k))X for all f ∈ X and 0 ≤t ≤2π, where X is the Banach space of all continuous functions or all L^p integrable functions, 1 ≤p ≤+∞, on S^n with norm ||·||X, and ω^s(f,t)X is the modulus of smoothness of degree s 〉 0 for f ∈X. Moreover, +r^Vt^γ and +rWt^k have the same saturation class if γ= 2k.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第2期387-416,共30页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61272023, 91330118) and the Innovation Foundation of Postgraduates of Zhejiang Province of China (No. YK2008066).
关键词 SPHERE SEMIGROUP APPROXIMATION modulus of smoothness MULTIPLIER Sphere, semigroup, approximation, modulus of smoothness, multiplier
  • 相关文献

参考文献16

  • 1Askey R, Wainger S. On the behavior of special classes of ultraspherical expansions, I J d'Analyse Math, 1965, 15:193-220. 被引量:1
  • 2Askey R, Wainger S. On the behavior of special classes of ultraspherical expansions Ⅱ. J d'Analyse Math, 1965, 15:221-244. 被引量:1
  • 3Berens H, Butzer P L, Pawelke S. Limitierungsverfahren von reihen mehrdimensionaler kugelfunktionen und deren saturationsverhalten. Publ Res Inst Math Sci Set A, 1968, 4(2): 201 -268. 被引量:1
  • 4Bochner S. Quasi analytic functions, Laplace operator, positive kernels. Ann Math, 1950, 51(1): 68-91. 被引量:1
  • 5Bochner S. Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions. In: Proceedings of the Conference on Differential Equations. University of Maryland, 1955, 23-48. 被引量:1
  • 6Butzer P L, Berens H. Semi-groups of Operators and Approximation. Berlin: Springer, 1967. 被引量:1
  • 7Dai F. Some equivalence theorems with K-functionals. J Approx Theory, 2003, 121: 143-157. 被引量:1
  • 8Dai F, Ditzian Z. Strong converse inequality for Poisson sums. Proc Amer Math Soc, 2005, 133(9): 2609-2611. 被引量:1
  • 9Ditzian Z, Ivanov K. Strong converse inequalities. J d'Analyse Math, 1993, 61:61-111. 被引量:1
  • 10Dunkl C F. Operators and harmonic analysis on the sphere. Trans Amer Math Soc, 1966, 125(2): 250 -263. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部