期刊文献+

用于纹理特征提取的改进的LBP算法 被引量:20

Improved LBP used for texture feature extraction
下载PDF
导出
摘要 针对现有的纹理特征提取方法计算复杂度高的问题,利用局部二值模式(LBP)算法思想简单、计算复杂度小的优势,在已有的完整LBP(CLBP)算法基础上,提出了一种改进的CLBP算法(ICLBP)。ICLBP算法保留了CLBP算法中CLBP_S,而对CLBP_M算子、CLBP_C算子进行了改进,提出一个新的纹理描述算子ICLBP_T。ICLBP算法更全面地描述了局部窗口的纹理特征,同时有效解决了CLBP算法中CLBP_M算子对灰度分布不均敏感的问题。通过对Outex、CURet数据库的数据分类实验,结果表明,相比于已有的LBP算法,ICLBP算法的分类精度有了明显的改进,同时ICLBP算法中ICLBP_SCT特征具有较低的特征维数,具有较好的实用价值。 For most texture feature extraction method, the problem of high computational complexity always exists. An Improved Complete Local Binary Pattern algorithm(ICLBP)is proposed based on Complete LBP(CLBP). ICLBP preserves the CLBP_S in CLBP, while makes an improvement on CLBP_M and CLBP_C, and proposes a new texture description operator ICLBP_T. ICLBP can describe the local texture feature in a comprehensive way, and the problem that CLBP_M operator in CLBP is sensitive to uneven distribution of gray, is well solved in ICLBP. The classification results on Outex and CURet image databases suggest that, compared to the existing LBP algorithm, ICLBP has obtained a higher classifica-tion accuracy, meanwhile, the ICLBP_SCT feature in ICLBP has a lower feature dimension and better practical value.
出处 《计算机工程与应用》 CSCD 2014年第6期182-185,245,共5页 Computer Engineering and Applications
基金 国家级创新创业项目(No.201210709052) 陕西省科技厅创新工程重大科技专项项目(No.2008ZDKG-36)
关键词 纹理特征提取 局部二值模式 完整局部二值模式算法(CLBP) 改进的完整局部二值模式算法(ICLBP) texture feature extraction local binary patterns Complete Local Binary Pattern algorithm (CLBP) ImprovedComplete Local Binary Pattem algorithm(ICLBP)
  • 相关文献

参考文献18

  • 1Smith J R, Chang Shih-Fu.Automated binary texture feature sets for image retrieval[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 1996:2239-2242. 被引量:1
  • 2Haralick R M, Shanmugam K, Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973,3 (6) : 610-621. 被引量:1
  • 3Mallat S G.A theory for multi-resolution signal decom- position: the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693. 被引量:1
  • 4Galloway M.Texture analysis using gray level run lengths[J]. Computer Graphics Image Processing, 1975,4 : 172-199. 被引量:1
  • 5Hassner M, Sklansky J.The use of markov random fields as models of texture[J].Computer Graphics and Image Processin. 1980.12 (3), 357-370. 被引量:1
  • 6刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:427
  • 7Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition, 1996,29 : 51-59. 被引量:1
  • 8Iakovidis D K, Keramidas E, Maroulis D.Fuzzy local binary patterns for ultrasound texture characterization[C]// Lecture Notes in Computer Science: Image Analysis and Recognition, 2008,5112 : 750-759. 被引量:1
  • 9Nanni L, Brahnam S, Lumini A.A study for selecting the best performing rotation invariant patterns in local binary/ ternary patterns[C]//Image Processing, Computer Vision & Pattern Recognition, 2010 : 12-15. 被引量:1
  • 10Fu X, Wei W.Centralized binary pattems embedded with image euclidean distance for facial expression recogni- tion[C]//The Fourth International Conference on Natural Computation, 2008,10(4) : 115-119. 被引量:1

二级参考文献49

共引文献497

同被引文献163

引证文献20

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部