期刊文献+

嗜乙酰乙酸棒杆菌Corynebacterium acetoacidophilum-Δldh缺氧条件下代谢葡萄糖途径的变化 被引量:1

Metabolic shift of Corynebacterium acetoacidophilum-Δldh under oxygen deprivation conditions
原文传递
导出
摘要 缺氧条件下嗜乙酰乙酸棒杆菌Corynebacterium acetoacidophilum ATCC13870生长停滞,却能够代谢葡萄糖产生以乳酸和琥珀酸为主的有机酸。采用以sacB基因为反向筛选标记的同源重组染色体基因敲除系统,敲除嗜乙酰乙酸棒杆菌的乳酸脱氢酶基因,得到的Δldh菌株CCTCC NO.M20122041在缺氧条件下不产乳酸,葡萄糖消耗速率降低了29.3%,产琥珀酸和乙酸浓度分别提高45.6%和182%;NADH/NAD+值小于1(约0.7);磷酸烯醇式丙酮酸羧化酶和乙酸激酶的比酶活分别提高84%和12倍。说明嗜乙酰乙酸棒杆菌中乳酸合成途径的阻断驱使了琥珀酸和乙酸代谢途径加强,推测加强NADH供给和阻断乙酸产生支路可能是提高C.acetoacidophilum菌株产琥珀酸产量的有效途径。 Lactate and succinate were produced by Corynebacterium acetoacidophilum from glucose under oxygen deprivation conditions. To construct knockout mutant, lactate dehydrogenase gene (ldh) of C. acetoacidophilum was deleted by double-crossover chromosome replacement with sacB gene. Comparing with the wild strain ATCC13870, ldhA-deficent mutant produced no lactate with glucose consumption rate decreased by 29.3%, while succinate and acetate concentrations were increased by 45.6% and 182%, respectively. Moreover, the NADH/NAD^+ rate was less than 1 (about 0.7), and the activities of phosphoenolpyruvate carboxylase and acetate kinase of the ldhA-deficent mutant were enhanced by 84% and 12 times, respectively. Our studies show that succinicate and acetate production pathways are strengthened by blocking lactate synthesis. It also suggests that improving NADH supply and eliminating acetate generation are alternative strategies to get high succinate-producer.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第3期435-444,共10页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2006AA020301-012)资助~~
关键词 嗜乙酰乙酸棒杆菌 ldhA-敲除菌 缺氧 琥珀酸 代谢途径 Corynebacterium acetoacidophilum, ldhA-deficent mutant, oxygen deprivation, succinic acid, metabolic
  • 相关文献

参考文献26

  • 1Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotech, 2011, 23(4): 1-10. 被引量:1
  • 2Niimi S, Suzuki N, Inui M, et al. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbioi Biotechnol, 2011, 90(5): 1721-1729. 被引量:1
  • 3Sasaki M, Jojima T, Inui M. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol, 2010, 86(4): 1057-1066. 被引量:1
  • 4Mimitsuka T, Sawai H, Hatsu M, et al. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem, 2007, 71(9): 2130-2135. 被引量:1
  • 5Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2010, 88(4): 859-868. 被引量:1
  • 6Takahashi C, Shirakawa J, Tsuchidate T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol, 2012, 51(3): 171-176. 被引量:1
  • 7Dominguez H, Nezondet C, Lindley ND, et al. Modified carbon flux during oxygen-limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett, 1993, 15(5): 449-454. 被引量:1
  • 8Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol, 2005, 68(4): 475-480. 被引量:1
  • 9Inui M, Murakami S, Okino S, et al. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Mol Microbiol Biotechnol, 2004, 7(4): 182-196. 被引量:1
  • 10Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol, 2006, 9(3): 268-274. 被引量:1

二级参考文献45

共引文献61

同被引文献21

  • 1余秉琦,沈微,诸葛健.适用于异源DNA高效整合转化的谷氨酸棒杆菌电转化法[J].中国生物工程杂志,2005,25(2):78-81. 被引量:26
  • 2黄培堂.分子克隆实验指南第三版.北京:科学出版社.2002. 被引量:2
  • 3Shiio I. Process for producing L-glutamic acid. U.S. Patent 117915, 1964. 被引量:1
  • 4Kinoshita S, Udaka S, Akita S, et al. Method of producing L- glutamic acid by fementation. U.S. Patent 3003925, 1961. 被引量:1
  • 5于芳.谷氨酸棒杆菌产琥珀酸研究.无锡:江南大学,2012. 被引量:1
  • 6Dittrich C R, Vadali R V, Bennett G N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress, 2005, 21(2) : 627-631. 被引量:1
  • 7Yasuda K, Jojima T, Suda M, et al. Analyses of the acetate- producing pathways in Corynebacterium glutarnicum under oxygen-deprived conditions. Applied Microbiology and Bioteehnology, 2007,77 (4) : 853-860. 被引量:1
  • 8Litsanov B, Kabus A, Brocker M, et al. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microbial Biotechnology, 2012, 5 (1) : 116-128. 被引量:1
  • 9Litsanov B, Broeker M, Bott M. Toward homosuccinate fermentation : metabolic engineering of Corynebacterium glutamieum for anaerobic production of succinate from glucose and formate. Applied and Environmental Microbiology, 2012, 78 (9) : 3325-3337. 被引量:1
  • 10Zhu N Q, Xia H H, Wang Z W, et al. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PloS ONE, 2013, 8 (4) : e60659. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部