期刊文献+

一种基于雷达图像处理的跑道异物检测方法 被引量:3

FOD Detection Approach Based on Radar Image Processing
下载PDF
导出
摘要 机场跑道异物检测对排除跑道隐患、保障飞行安全意义重大。提出了一种基于雷达图像处理的跑道异物检测方法,首先通过若干高斯模型的叠加来拟合噪声分布,进而大幅削弱系统噪声;接着使用改进的背景减法排除背景的干扰;然后对经过二值化和中值滤波后的雷达图像通过数学形态学中的闭运算进行处理;最后使用漫水填充算法检测和标注异物。该方法已在雷达系统中使用,实时性强,效果良好。 FOD detection is of great significance to eliminate hidden dangers on runway and ensure flight safety. This paper proposes an FOD detection approach based on radar image processing. Firstly, several Gaussian models are used to represent the noise in radar image and remove the system noise. Then, the interference of background using a special background subtraction method are eliminated. Moreover closing operation from mathematical mor- phology is used to process the image after binarization and median filtering. Finally, flood fill algorithm is chosen to detect and mark FOD. This approach is successfully used in radar system and it has great real-time performance and brilliant effect.
出处 《电视技术》 北大核心 2014年第7期186-189,共4页 Video Engineering
基金 航空科学基金项目(201120M5007)
关键词 跑道异物检测 雷达图像处理 背景减法 漫水填充 FOD detection radar image processing background subtraction flood fill
  • 相关文献

参考文献8

二级参考文献70

  • 1邓世伟,袁保宗.基于数学形态学的深度图像分割[J].电子学报,1995,23(4):6-9. 被引量:22
  • 2国家民航总局机场司民航局安全技术中心.FOB防范手册[R].2009:1-5. 被引量:1
  • 3FAA. AC 150/5220 - 24. Airport Foreign Object Debris Detection Equipment[ R]. 2009 :1- 13. 被引量:1
  • 4民用机场飞行区技术标准[S].2007:8-25. 被引量:1
  • 5M Ferri, G Giunta, A Banelli, et al. Millimeter wave radar applications to airport surface movement control and foreign object eetection[ J ]. Proceedings of the 6^th European Radar Conference. Roma, Aug,23 - 26,2009 : 1 - 8. 被引量:1
  • 6C Becker,J Sala,K Tokusei,J C Latombe.Reliable navigationusing landmarks[C].Proceedings of 1995 IEEE International Con-ference on Robotics and Automation.May.1995:401-406. 被引量:1
  • 7M V Lieshout.Markov Point Processes and Their Applications[M].London:Imperial College Press,2000. 被引量:1
  • 8F Lafarge,G Gimelfarb,X Descombes.Geometric Feature Extrac-tion by a Multi-marked Point Process[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2010,69(3):1597-1609. 被引量:1
  • 9D Cremers,S J Osher,S Soatto.Kernel Density Estimation andIntrinsic Alignment for Shape Priors in Level Set Segmentation[J].International Journal of Computer Vision,2006,50(69):335-351. 被引量:1
  • 10G Bradski,A Kaebler.Learning OpenCV[M].California:O'Reilly Media,Inc.,2008. 被引量:1

共引文献424

同被引文献19

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部