摘要
设 Xd( t) ( t∈R+ )是 d维可分的平稳高斯过程 ,在一定条件下 ,本文得到了 Xd( t)象集的一致 Hausdorff维数 ,证明了 Xd( t)没有二重点 .
Suppose X d(t)(t∈R +) is d dimension separable stationary Gaussian Process, under some conditions, Uniform Hausdorff dimension are obtained, and no exitence condition for two multiple points are proved. Polya process is its special case.
出处
《数学杂志》
CSCD
2000年第4期410-412,共3页
Journal of Mathematics
基金
湖北省教委青年科学研究发展基金项目!( 1 9980 2 2)