The Isometry of Riemannian Manifold to a Sphere
The Isometry of Riemannian Manifold to a Sphere
摘要
In this paper the quasi-constant curvature space and the Riemannian manifold contained the totally umbilical hypersurface family are studied,and two theorems are given at the same time.
参考文献7
-
1Li Zhonglin,Chin Sci Bull,1986年,9期,717页 被引量:1
-
2Li Zhonglin,杭州大学学报,1986年,13卷,1期,1页 被引量:1
-
3Li Zhonglin,杭州大学学报,1986年,13卷,4期,387页 被引量:1
-
4Bai Z G,数学年刊.A,1986年,7卷,4期,445页 被引量:1
-
5Bai Z G,Chin Ann Math B,1985年,6卷,4期,409页 被引量:1
-
6Li Zhonglin,杭州大学学报,1983年,10卷,4期,403页 被引量:1
-
7Bai Z G,Chin Ann Math B,1982年,3卷,4期,471页 被引量:1
-
1蒋声.斜拟常曲率空间的曲率分解[J].扬州师院学报(自然科学版),1996,16(3):1-5.
-
2姬秀,胡传峰.拟常曲率空间中具有常数量曲率的紧致超曲[J].安阳师范学院学报,2012(5):39-41.
-
3蒋声.容有双重各向同性超曲系的黎曼流形[J].扬州师院学报(自然科学版),1993,13(3):1-6.
-
4舒世昌.拟常曲率空间的紧致极小子流形[J].工程数学学报,1994,11(3):48-54. 被引量:1
-
5舒世昌.拟常曲率空间的紧致极小子流形[J].陕西师大学报(自然科学版),1992,20(3):15-19. 被引量:3
-
6舒世昌,纪永强.拟常曲率空间的紧致极小子流形全测地的关于Ricci曲率的Pinching条件[J].宁夏大学学报(自然科学版),1993,14(2):15-23.
-
7Cheng Bing ZHAO1,2 1.Department of Mathematics,Anhui University of Architecture,Anhui 230022,P.R.China,2.Postdoctoral Research Station of Management College,Hefei University of Technology,Anhui 230009,P.R.China.Gap Theorem on Complete Noncompact Riemannian Manifold[J].Journal of Mathematical Research and Exposition,2011,31(3):429-436.
-
8何国庆,宋卫东.拟常曲率空间中具有常平均曲率的完备超曲面[J].大学数学,2009,25(5):46-49.
-
9杨纬隆.On Infinitesimal Ⅱ-isometry of Surfaces[J].Chinese Quarterly Journal of Mathematics,1996,11(2):5-10.
-
10Peng ZHU,Shouwen FANG.Stable Hypersurfaces in a 4-Dimensional Sphere[J].Journal of Mathematical Research with Applications,2016,36(6):718-722.