期刊文献+

求解非线性规划问题的两个微分方程系统(英文) 被引量:2

Two Differential Systems for Solving Nonlinear Programming Problems
下载PDF
导出
摘要 本文给出 Evtushenko与Zhadan( 1974)提出的求解数学规划问题微分方程系统的两个校正形式,它们可用于求解具有等式和不等式约束的非线性规化问题.第一个校正系统拓宽了Evtushenko与Zhadan 微分方程方法;第二个校正系统通过引入新的方程系统导出乘子函数得到,它无需使用Evtushenko与Zhadan所用的那样强的约束规范.我们建立了这两个微分方程方法及其离散迭代方法的收敛性定理,给出了基于第二个微分方程离散格式的数值算法及其某些数值结果. This paper presents two modified versions to the differential system proposed by Evtushenko and Zhadan (1974), for solving mathematical programming problems. Both modified systems may be used to solve nonlinear optimization problems with both equality and inequality constraints. The first version extends the range of differential equation methods given by Evtushenko and Zhadan. A new system is introduced for deriving multiplier functions in the second version, which enables it use a less restrictive constraint qualification than that used by Evtushenko and Zhadan (1994). The convergence theorems for both the modified differential systems and their discrete schemes are established. An algorithm, based on the discrete approach of the second version, is given and some numerical experiments are described.
出处 《运筹学学报》 CSCD 2000年第4期33-46,共14页 Operations Research Transactions
基金 Supported by the Natural Science Youth Foundation of China.
关键词 非线性规划 约束规范 微分方程 平衡解 数值算法 离散格式 nonlinear programming, constraint qualification, differential equation, equilibrium solution, stable(
  • 相关文献

参考文献9

  • 1Zhang L W,Numerical Linear Algebra and Optimization,1999年,161页 被引量:1
  • 2Yu G,Comp Maths Math Phys,1994年,34卷,5期,579页 被引量:1
  • 3Yu G,Computational Optimization Applications,1994年,3卷,289页 被引量:1
  • 4Yu G,Optimization Methods and Software,1994年,3卷,237页 被引量:1
  • 5Yu G,Algorithms for Continuous Optimization,1994年,255页 被引量:1
  • 6Pan P Q,J Comput Appl Math,1992年,10卷,1期,77页 被引量:1
  • 7Gao Z Y,科学通报,1991年,36卷,19期,1444页 被引量:1
  • 8Yu G,Numerical Optimization Techniques, Optimization Software,1985年 被引量:1
  • 9Yu G,Sov Math Dokl,1974年,15卷,2期,420页 被引量:1

同被引文献16

  • 1Arrow K.J.,Hurwicz L.Reduction of constrained maxima to saddle point problems[C].Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability,Neyman J.(ed.),University of California Press,Berkeley,1956,1-26. 被引量:1
  • 2Bertsekas B.P.Nonlinear Programming[M].Athena Scientific,Second edition,1999.Division,New York,1985. 被引量:1
  • 3Evtushenko Yu.G.Numerical Optimization Techniques,Optimization Software[M].Inc.Publication Division,New York,1985. 被引量:1
  • 4Evtushenko Yu.G.Two numerical methods of solving nonlinear programming problems[J].Sov.Math.Dokl,1974,15:2,420-423. 被引量:1
  • 5Evtushenko Yu.G.,Zhadan V.G.Barrier-projective methods for nonlinear programming.Comp.Maths Math.Phys,1994,34(5):579-590. 被引量:1
  • 6Evtushenko Yu.G.,Zhadan V.G.Stable barrier-projection and barrier-Newton methods in nonlinear programming[J].Optimization Methods and Software,1994,3:237-256. 被引量:1
  • 7Evtushenko Yu.G.,Zhadan V.G.Stable barrier-projection and barrier-Newton methods for linear and nonlinear programming,Algorithms for Continuous Optimization[M].Spedicato E.(ed.),Kulwer Academic Publishers,1994,255-285. 被引量:1
  • 8Evtushenko Yu.G.,Zhadan V.G.Stable barrier-projection and barrier-Newton methods in linear programming[J].Computational Optimization and application,1994,3:289-303. 被引量:1
  • 9Fiacco A.V.,McCormick G.P.Nonlinear Programming:Sequential Unconstrained Minimization Techniques[M].John Wiely,New York,1968. 被引量:1
  • 10Yamadhita H.A differential equation approach to nonlinear programming[J].Math.Prog,1980,18:115-168. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部