期刊文献+

基于空气动力学模型含雷达散射截面观测的联合目标跟踪识别

Joint Target Tracking and Classification Based on Aerodynamic Model and RCS Observation
下载PDF
导出
摘要 以地基被动警戒雷达为应用背景,主要监视低空突防来袭目标,利用地面上多个商业广播发射的无线电调频(FM)信号,提出基于空气动力学模型含雷达散射截面(RCS)观测的联合目标跟踪识别技术。该技术使用空气动力学模型来描述目标的平动和转动,并将分类器输出的具体参数传递给跟踪器,实现基于动力学模型的跟踪;同时将RCS包括在观测中,它既可提供主要的分类特征,又可根据跟踪器的输出来预测RCS值。跟踪与分类被紧密结合,充分发挥联合跟踪识别的优势,有效提高目标的跟踪性能和识别概率。运用FEKO电磁仿真软件,实时获得目标的RCS观测值,通过粒子滤波实现联合跟踪识别,搭建了基于FM信号的被动雷达目标跟踪识别仿真平台。仿真结果表明,交互式多模型正则化粒子滤波的跟踪精度和识别概率都要优于交互式多模型粒子滤波。 An effective joint target tracking and classification technology, which uses the radio frequency modulation (FM) signals transmitted by the commercial broadcast stations on ground, based on the aero- dynamic model and RCS observation is proposed for the ground-based passive warning radars for monito- ring the low altitude penetration incoming targets. The aerodynamic model is used to describe the transla- tion and rotation of target, and the specific parameters of a particular type of aircraft are transferred to the tracker to realize the aerodynamic model-based tracking; at the same time, the radar cross section (RCS) is included in the observation to provide the main classification featuers, and the outputs of the trackerare used to predict the RCS value. Therefore, tracking and classification are coupled tightly to give full play to the advantage of joint tracking and classification, effectively improving the tracking performance and classification probability. In the implementation of this technology, the electromagnetic simulation software FEKO is applied to obtain the target' s real-time RCS observation; this joint tracking and classi- fication is realized by particle filtering. A simulation platform for the FM signal-based target tracking and classification by passive radar is built. The simulation results show that the interacting multiple model regularized particle filter works better than the interacting multiple model particle filter in tracking accura- cy and classification probability.
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第3期318-325,共8页 Acta Armamentarii
基金 航空科学基金项目(20125151028)
关键词 雷达工程 空气动力学模型 雷达散射截面 联合跟踪识别 FEKO电磁仿真软件 粒子滤波 radar engineering aerodynamic model radar cross section joint tracking and classifica-tion FEKO electromagnetic simulation software particle filtering
  • 相关文献

参考文献9

  • 1单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 2Yang W, Fu Y W, Long J Q, et al. Joint detection, tracking and classification of multiple targets in clutter using the PHD filter [ J ]. IEEE Transactions on Aerospace and Electronics Systems, 2012, 48 ( 4 ) : 3594 - 3609. 被引量:1
  • 3Melzi M, Ouldali A. Joint multiple target tracking and classifica- tion using the unscented Kalman particle PHD filter[ C] //2011 IEEE 9th International New Circuits and System Conference. Bor- deaux, FR:IEEE, 2011:534 -537. 被引量:1
  • 4MEI W, SHAN G L, LI X R. Simultaneous tracking and classifi- cation:a modularized scheme [ J ]. IEEE Transactions on Aero- space and Electronic Systems, 2007, 43 (2) : 487 - 506. 被引量:1
  • 5Miller M I, Srivastava A,Grenander U. Conditional-mean estima- tion via jump-diffusion process in multiple target tracking/recogni- tion [ J]. IEEE Transactions on Signal Processing, 1995, 43 (11) : 2678 -2690. 被引量:1
  • 6Guo Y F, Peng D L, Chen H J, et al. A kernel particle filter al- gorithm for joint tracking and classification[ C ]//2012 15th Inter- national Conference on Information Fusion. Singapore: IEEE, 2012:2386 - 2391. 被引量:1
  • 7Herman S, Moulin P. A particle filtering approach to FM-band passive radar tracking and automatic target recognition[ C ] //2002 IEEE Aerospace Conference Proceedings. Big Sky, Montana: IEEE, 2002 : 1789 - 1808. 被引量:1
  • 8Herman S M. A particle filter approach to joint passive radar tracking and target classification[ D ]. US : Graduate College of the University of Illinois, 2002. 被引量:1
  • 9罗飞腾.目标跟踪的粒子滤波技术研究[D].杭州:中国科学技术大学,2010. 被引量:2

二级参考文献26

  • 1Miller M I,Srivastava A,Grenander U.Conditional-mean estimation via jump-diffusion process in multiple target tracking/recognition[J].IEEE Trans on Signal Processing,1995,43(11):2678-2690. 被引量:1
  • 2Challa S,Pulford G W.Joint target tracking and classification using radar and ESM sensors[J].IEEE Trans on Aerospace and Electronic Systems,2001,37(3):1039-1055. 被引量:1
  • 3Smets P,Ristic B.Kalman filter and joint tracking and classification in the TBM framework[C] ∥ Proc of the seventh international conference on information fusion.Stockholm,Sweden:ISIF,2004. 被引量:1
  • 4Khosla D,Chen Y.Joint kinematic and feature tracking using probabilistic argumentation[C] ∥ Proc of the sixth international conference on information fusion.Cairns,Queensland,Australia:ISIF,2003:11-16. 被引量:1
  • 5Angelova D,Mihaylova L.Sequential Monte Carlo Algorithms for joint target tracking and classification using kinematic radar information[C] ∥ Proc of the seventh international conference on information fusion.Stockholm,Sweden:ISIF,2004. 被引量:1
  • 6MEI W,SHAN G L,LI X R.An efficient Bayesian algorithm for joint target tracking and classification[C]∥Proc of the seventh international conference on signal processing.Beijing,China:IEEE Press/Publishing House of Electronics Industry,2004:2090-2098. 被引量:1
  • 7MEI W,SHAN G L,LI X R.Simultaneous tracking and classification:a modularized scheme[J].To appear in IEEE Trans on Aerospace and Electronic Systems,2007,43(2):487-506 被引量:1
  • 8Lanterman A D.Tracking and recognition of airborne targets via commercial television and FM radio signals[C]∥Proc of SPIE acquisition,tracking,and pointing.Orlando:SPIE,1999,3692:189-198. 被引量:1
  • 9Herman S,Moulin P.A particle filtering approach to FM-band passive radar tracking and automatic target recognition[C]∥ Proc of the IEEE aerospace conference.Big Sky Montana:IEEE,2002:1789-1808. 被引量:1
  • 10Herman S M.A particle filter approach to joint passive radar tracking and target classification[D].US:Graduate College of the University of Illinois,2002. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部