期刊文献+

一类具有比率和单调功能反应的中立型捕食系统的正周期解 被引量:3

Positive Periodic Solutions for a Kind of Neutral Predator-prey System with Ratio-dependent and Monotonic Functional Responses
原文传递
导出
摘要 研究了一类具有比率和单调功能反应的中立型捕食系统.通过利用重合度理论获得了其正周期解存在性的充分条件,推广和改进了已有文献的相关结果. This paper investigates the existence of positive periodic solutions for a kind of predator-prey system with ratio-dependent and monotonic functional responses.By using a continuation theorem based on coincidence degree theory,some new sufficient conditions of positive periodic solutions of the system are established.Which modifies and generalizes some corresponding publishing results.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第3期274-280,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11161029) 广西高校科学技术研究项目(2013YB282) 广西自然科学基金(019022)
关键词 比率 单调功能反应 正周期解 重合度 ratio-dependent monotonic functional responses positive periodic solutions coincidence degree
  • 相关文献

参考文献7

二级参考文献52

  • 1高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 2Goh B S. Global Stability in Two Species Interactions. J. Math. Biol., 1976, 3:313-318. 被引量:1
  • 3Hastings A. Global Stability in Two Species Systems. J. Math. Biol., 1978, 5:399-403. 被引量:1
  • 4He X Z. Stability and Delays in a Predator-prey System. J. Math. Anal. Appl, 1996, 198:355-370. 被引量:1
  • 5Arditi R, Saiah H. Empirical Evidence of the Role of Heterogeneity in Ratio-dependent Consumption.Ecology, 1992, 73:1544-1551. 被引量:1
  • 6Arditi R, Perrin N, Saiah H. Functional Response and Heterogeneity: An Experiment Test with Cladocerans. OIKOS, 1991, 60:69-75. 被引量:1
  • 7Arditi R, Ginzburg L R, Akcakaya H R. Variation in Planton Densities Among Lakes: A Case for Ratio-dependent Models. American Nat., 1991, 138:1287-1296. 被引量:1
  • 8Gutierrez A P. The Physiological Basis of Ratio-dependent Predtor-prey Theory: a Methbolic Pool Model of Nicholson's Blowflies as an Example. Ecology, 1992, 73:1552-1563. 被引量:1
  • 9Arditi R, Ginzburg L R. Coupling in Predator-prey Dynamics: Ratio-dependence. J. Theoretical Biol., 1989, 139:311-306. 被引量:1
  • 10Hanski I. The Functional Response of Predator: Worries about Scale. TREE, 1991, 6:141-142. 被引量:1

共引文献37

同被引文献23

  • 1高巧琴,雒志江.一类具有时滞和基于比率的阶段结构捕食扩散模型[J].生物数学学报,2014,29(1):136-142. 被引量:4
  • 2陈凤德,陈晓星,张惠英.捕食者具有阶段结构Holling Ⅱ类功能性反应的捕食模型正周期解的存在性以及全局吸引性[J].数学物理学报(A辑),2006,26(1):93-103. 被引量:29
  • 3HASSELL M P, VARLEY G C. New Inductive Population Model for Insect Parasites and Its Bearing on Biological Con- trol~J]. Nature, 1969, 223(5211): 1133[1137. 被引量:1
  • 4WANG K. Periodic Solution to a Delayed Predator-Prey Model with Hassell-Varley Type Function Response ]-J~. Non linear Analysis~ Real World Application, 2011, 12(1): 137[145. 被引量:1
  • 5LIU G R, YAN W P, YAN J R. Positive Periodic Solutions for a Class of Neutral Delay Gause-Type Predator-Prey Sys- tem [J]. Nonlinear Anal, 2009, 71(10). 4438[4447. 被引量:1
  • 6GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equation [M]. New York. Springer-Vet- lag, 1977. 被引量:1
  • 7WANG Q, DAI B X, CHEN Y M. Multiple Periodic Solutions of an Impulsive Predator-Prey Model with Holling-Type IV Functional Response [J]. Math Comput Modelling, 2009, ~,9(9) : 1829[1836. 被引量:1
  • 8XIA Y H,CAO J D,CHENG S S. Multiple periodic solutions for a delayed stage-structure predator-prey model with non-monotonefunctional response[J].Applied Mathematical Modelling ,2007(31):1947-1959. 被引量:1
  • 9LIU G,YAN W,YAN J. Positive periodic solutions for a class of neutral delay Gause-type predator-prey system[J].Nonlinear Anal,2009(71):4438-4447. 被引量:1
  • 10Gaines R E,Mawhin J L. Coincidence degree and nonlinear differential equation[M]. New York: Springer-Verlag,1977. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部