摘要
Web of Things (WoT) makes it possible to connect tremendous embedded devices to web in Representational State Transfer (REST) style. Some lightweight RESTful protocols have been proposed for the WoT to replace the HTTP protocol running on embedded devices. However, they keep the principal characteristic of the REST style. In particular, they support one-to-one requests in the client-server mode by four standard RESTful methods (GET, PUT, POST, and DELETE). This characteristic is however inconsistent with the practical networks of embedded devices, which typically perform a group operation. In order to meet the requirement of group communication in the WoT, we propose a resource-oriented protocol called SeaHttp to extend the REST style by introducing two new methods, namely BRANCH and COMBINE respectively. SeaHttp supports parallel processing of group requests by means of splitting and merging them. In addition SeaHttp adds spatiotemporal attributes to the standard URI for naming a dynamic request group of physical resource. Experimental results show that SeaHttp can reduce average energy consumption of group communication in the WoT by 18.5%, compared with the Constrained Application Protocol (CoAP).
Web of Things (WoT) makes it possible to connect tremendous embedded devices to web in Representational State Transfer (REST) style. Some lightweight RESTful protocols have been proposed for the WoT to replace the HTTP protocol running on embedded devices. However, they keep the principal characteristic of the REST style. In particular, they support one-to-one requests in the client-server mode by four standard RESTful methods (GET, PUT, POST, and DELETE). This characteristic is however inconsistent with the practical networks of embedded devices, which typically perform a group operation. In order to meet the requirement of group communication in the WoT, we propose a resource-oriented protocol called SeaHttp to extend the REST style by introducing two new methods, namely BRANCH and COMBINE respectively. SeaHttp supports parallel processing of group requests by means of splitting and merging them. In addition SeaHttp adds spatiotemporal attributes to the standard URI for naming a dynamic request group of physical resource. Experimental results show that SeaHttp can reduce average energy consumption of group communication in the WoT by 18.5%, compared with the Constrained Application Protocol (CoAP).
基金
supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA06010403
the International Science and Technology Cooperation Program of China under Grant No.2013DFA10690
the National Natural Science Foundation of China under Grant No.61003293
the Beijing Natural Science Foundation under Grant No.4112054