期刊文献+

一种奇异混合信号盲分离的神经网络模型 被引量:1

A Kind of Neural Network Model for Blind Separation of Singularly Mixed Sources
下载PDF
导出
摘要 混合信号盲分离问题是一类很难而又具有很强应用背景的问题 ,以往对这类问题的研究均在混合矩阵为非奇异的条件下进行 .本文给出一种神经网络模型及相应算法 。 Blind separation of sources is a problem arising in many practical fields, which is difficult to research. In the existing references, the mixing matrix of sources is always supposed to be nonsingular. This paper presents an algorithm and a corresponding networks to deal with blind separation of sources in the case of singular mixing matrix.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第1期105-108,共4页 Control Theory & Applications
基金 国家自然科学基金重点基金! (6 95 740 0 9) 国家自然科学基金! (6 0 0 0 40 0 4) 广东省自然科学基金! (990 5 84)资助项目
关键词 信号盲分离 奇异性 神经网络 噪声 信号处理 blind separation singularity neural networks noise
  • 相关文献

参考文献5

  • 1[1]Jutten C and Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24(1):1-10 被引量:1
  • 2[2]Jutten C and Herault J. Blind separation of sources, Part II: problems statement [J]. Signal Processing, 1991,24(1):11-20 被引量:1
  • 3[3]Jutten C and Herault J. Blind separation of sources, Part III: Stability analysis [J]. Signal Processing, 1991,24(1):21-29 被引量:1
  • 4[4]Bell A J and Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7(4):1129-1159 被引量:1
  • 5[5]Cichocki A, Shun-ichi Amari and Thawonmas R. Blind singnal extraction using self-adaptive nonlinear Hebbian learning rule [A]. Proc. the 1996 International Symposium on Linear Theory and Its Application [C], Kochi, Japan,1996,337-380 被引量:1

同被引文献14

  • 1白琳,陈豪.一种奇异混合阵的盲信号提取算法[J].空间电子技术,2012,9(1):6-10. 被引量:1
  • 2王世海,陈向东,毕雪,杨家德,卢文韬.多分辨率子带分解的独立分量分析算法在红外图像去噪上的应用[J].电子技术应用,2007,33(6):66-68. 被引量:1
  • 3NADAL J, PARGA N. Nonlinear neurons in low-noise limit: A factorial code maximizes information transfer[J]. Network, 1994, 5 (3) : 565-581. 被引量:1
  • 4BELL A, SEJNOWSKI T. An information maximization approach to blind separation and blind de-convolution[J]. Neural Computation, 1995, 7(6): 1129-1159. 被引量:1
  • 5HYVARINEN A, OJA E. Independent component analysis: Algorithms and applications [J]. Neural Networks, 2000,13 ( 4/5 ): 411- 430. 被引量:1
  • 6HYVARINEN A, PAJUNEN P. Nonlinear independent component analysis: Existence and uniqueness results[J]. Neural Networks, 1999, 12(3) : 429-439. 被引量:1
  • 7JUTYEN C, ZADEH M, HOSSEINI S. Three easy ways for separating nonlinear mixtures[J]. Signal Processing, 2004, 84 (2) : 217- 229. 被引量:1
  • 8LIU W, RAJAPAKSE J. Approach and applications of constrained ICA[J]. Trans Neural Networks, 2005, 16( 1 ) : 203-212. 被引量:1
  • 9PLUMBLEY M. Algorithms for nonnegative component independent analysis[J]. Trans Neural Networks, 2003, 14(3) : 534-543. 被引量:1
  • 10LEE T, LEWICKI M, GIROLAMI M, et al. Blind source separation of more sources than mixtures using over-complete representations[J]. Signal Processing Letters, 1999, 4(5): 205-208. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部