摘要
在惯性约束聚变(ICF)实验中,点火靶丸表面(界面)的粗糙度和缺陷所产生的流体力学不稳定性是决定点火成功与否的关键因素之一,设计和研制流体力学不稳定性分解实验用靶是解决该问题的主要技术手段。结合国内外的研究现状和神光-Ⅱ激光装置的特点,设计并研制了一种新型柱状激波管。该靶型由三种介质组成,分别为调制聚苯乙烯(CH)圆片、柱状碳气凝胶(CRF)和CH微套管。调制CH圆片和柱状CRF通过微加工技术装配到CH微套管内,封装后形成柱状激波管。介绍了该靶型的设计原理和详细的制备工艺,并对相应的靶参数进行了测量。结果表明:柱状CRF气凝胶具有较好的成型性,长度、直径和密度分别为1000μm、730μm和250mg·cm-3;CH圆片的厚度和直径分别为15μm和730μm,表面调制图形的周期和峰谷差分别为100μm和4.3μm;实验得到的柱状激波管的轴向和径向最大装配误差分别为2μm和3μm。
In inertial confinement fusion (ICF) experiments, the surface (interface) roughness and defect of target capsule can lead to hydrodynamic instability when the target capsule is irradiated by high-intensity laser facility. Controlling and understanding the growth of hydrodynamic instability can strongly increase the feasibility of ignition experiment and is of the main importance for achieving ignition and high gain. A new cylindrical shock wave tube was designed and fabricated after consulting relevant references and the parameters of Shenguang II laser facility. The cylindrical shock wave tube consisted of rippled polystyrene (CH) film, cylindrical carbonized-resorcinol-formaldehyde (CRF) aerogel and cylindrical CH tube. The cylindrical shock wave tube was obtained by assembling the rippled CH film and cylindrical CRF aerogel into the cylindrical CH tube. The target design and fabrication processes were described while the target parameters were measured. The results indicate that the length, diameter and density of cylindrical CRF aerogel are 1000 um, 730 um and 250 mg · cm- 3, respectively, the diameter and thickness of the rippled CH film are 15 um and 730 um, while the perturbation period and amplitude on its surface are 100 um and 4.3 um, the maximum axial assembly deviation of the cylindrical shock wave tube is 2 um, while its maximum diameter assembly deviation is 3 um.
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2014年第2期80-86,共7页
High Power Laser and Particle Beams
基金
国家自然科学基金项目(51172163
51102184
51302040)
江西省教育厅青年科学基金项目(GJJ13652)
上海市特殊人工微结构材料与技术重点实验室开放基金项目(ammt2013A-4)
关键词
惯性约束聚变
流体力学不稳定性
柱状激波管
柱状碳气凝胶
旋涂工艺
微加工
inertial confinement fusion
hydrodynamic instability
cylindrical shock wave tube
cylindrical carbon aerogel
spin-coating process
micro-machining