期刊文献+

ICF流体力学不稳定性实验用柱状激波管的研制 被引量:3

Fabrication of cylindrical shock wave tube for ICF hydrodynamic instability experiments
下载PDF
导出
摘要 在惯性约束聚变(ICF)实验中,点火靶丸表面(界面)的粗糙度和缺陷所产生的流体力学不稳定性是决定点火成功与否的关键因素之一,设计和研制流体力学不稳定性分解实验用靶是解决该问题的主要技术手段。结合国内外的研究现状和神光-Ⅱ激光装置的特点,设计并研制了一种新型柱状激波管。该靶型由三种介质组成,分别为调制聚苯乙烯(CH)圆片、柱状碳气凝胶(CRF)和CH微套管。调制CH圆片和柱状CRF通过微加工技术装配到CH微套管内,封装后形成柱状激波管。介绍了该靶型的设计原理和详细的制备工艺,并对相应的靶参数进行了测量。结果表明:柱状CRF气凝胶具有较好的成型性,长度、直径和密度分别为1000μm、730μm和250mg·cm-3;CH圆片的厚度和直径分别为15μm和730μm,表面调制图形的周期和峰谷差分别为100μm和4.3μm;实验得到的柱状激波管的轴向和径向最大装配误差分别为2μm和3μm。 In inertial confinement fusion (ICF) experiments, the surface (interface) roughness and defect of target capsule can lead to hydrodynamic instability when the target capsule is irradiated by high-intensity laser facility. Controlling and understanding the growth of hydrodynamic instability can strongly increase the feasibility of ignition experiment and is of the main importance for achieving ignition and high gain. A new cylindrical shock wave tube was designed and fabricated after consulting relevant references and the parameters of Shenguang II laser facility. The cylindrical shock wave tube consisted of rippled polystyrene (CH) film, cylindrical carbonized-resorcinol-formaldehyde (CRF) aerogel and cylindrical CH tube. The cylindrical shock wave tube was obtained by assembling the rippled CH film and cylindrical CRF aerogel into the cylindrical CH tube. The target design and fabrication processes were described while the target parameters were measured. The results indicate that the length, diameter and density of cylindrical CRF aerogel are 1000 um, 730 um and 250 mg · cm- 3, respectively, the diameter and thickness of the rippled CH film are 15 um and 730 um, while the perturbation period and amplitude on its surface are 100 um and 4.3 um, the maximum axial assembly deviation of the cylindrical shock wave tube is 2 um, while its maximum diameter assembly deviation is 3 um.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第2期80-86,共7页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51172163 51102184 51302040) 江西省教育厅青年科学基金项目(GJJ13652) 上海市特殊人工微结构材料与技术重点实验室开放基金项目(ammt2013A-4)
关键词 惯性约束聚变 流体力学不稳定性 柱状激波管 柱状碳气凝胶 旋涂工艺 微加工 inertial confinement fusion hydrodynamic instability cylindrical shock wave tube cylindrical carbon aerogel spin-coating process micro-machining
  • 相关文献

参考文献25

  • 1Steven W H. Onset of nonlinear saturation for Rayleigh Taylor growth in the presence of a full spectrum of modes[J]. Phys Rev A, 1989 39(11) :5812-5825. 被引量:1
  • 2Ishizaki R, Nishihara K, Wouchuk J G, et al. Rippled shock propagation and hydrodynamic perturbation growth in laser implosion[J] Journal of Materials Processing Technology, 1999, 85(1/3) :34-38. 被引量:1
  • 3Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. Oxford: Clarendon Press, 1961. 被引量:1
  • 4Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Cornmun Pure Appl Math, 1960, 13(2) :297-319. 被引量:1
  • 5Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104. 被引量:1
  • 6Aeheson D J. Elementary fluid dynamics[M]. Oxford: Clarendon, 1990. 被引量:1
  • 7Chandrasekhar S. Principles of stellar dynamics[M]. New York: Dover, 1960. 被引量:1
  • 8Bodner S E. Symmetry and stability physics in laser fusion in physics of laser plasma[M]. Amsterdam: Handbook of Plasma Physics, 1991 247-70. 被引量:1
  • 9叶君建,周斌,徐翔,何钜华,沈军,傅思祖.侧照明实验用平面调制微靶的制备及参数测量[J].强激光与粒子束,2006,18(9):1511-1514. 被引量:10
  • 10黄燕华,高党忠,谢军,童维超,袁光辉,马小军.平面调制靶的正弦波曲面超精密加工与表征[J].强激光与粒子束,2012,24(6):1429-1433. 被引量:4

二级参考文献80

共引文献34

同被引文献64

  • 1沈军,王珏,吴翔.二氧化硅气凝胶的纳米结构与分形特性[J].同济大学学报(自然科学版),1996,24(1):76-81. 被引量:8
  • 2任洪波,万小波,张林,袁光辉,修鹏,张勇.可加工SiO_2气凝胶及其惯性约束聚变靶微柱制备[J].原子能科学技术,2007,41(5):633-636. 被引量:7
  • 3Gatski T B, Bonnet J P. Compressibility, Turbulence and High Speed Flow[M]. Holland: Elsevier, 2009. 被引量:1
  • 4Morkovin M V . Effects of compressibility on turbulent flow[J]. Mechanique de la Turbulence, 1962:367-380. 被引量:1
  • 5Marusie I, Kunkel G J, Porte A F. Experimental study of wall boundary conditions for large eddy simulation[J]. J Fluid Mech, 2001,446:.30-320. 被引量:1
  • 6Pirozzoli S, Grasso F,Gatski T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M =2.25[J]. PhysFluids, 2004,16:530-545. 被引量:1
  • 7van Driest E R. Turbulent boundary layer in compressible fluids[J] Phys Fluids, 1951,18:145-160. 被引量:1
  • 8Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Dokl Akad Nauk SSSR , 1941,30:299-303. 被引量:1
  • 9Kovasznay L S G. Turbulence in supersonic flows[J]. J Aero Sci, 1957,20:657. 被引量:1
  • 10Moyal J E. The spectra of turbulence in a compressible fluid: Eddy turbulence and random noise[J]. Math Proc Cornbridge philos Soc, 1952,48:329. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部