期刊文献+

Cluster态的核磁共振实验制备 被引量:3

NMR Experimental Implementation of Cluster State
下载PDF
导出
摘要 利用一种优化的幺正算符制备了一种高度纠缠态——cluster态,这个优化的幺正算符因为只需要施加非选择性脉冲,其所用的时间被明显缩短.该文选择一个三量子位的自旋体系,在核磁共振仪器上进行了实验验证,实验过程中先制备了一个三量子位的纯态,然后通过施加优化的幺正算符即可得到三量子位的cluster态,实验结果证明了优化幺正算符的有效性. This paper exploits one optimized unitary operator to prepare a type of highly entangled state of multiple qubits---cluster state. Based on optimal control theory, the duration of optimized unitary operator has been shortened due to the application of a series of non-selective pulse. We experimentally implemented the optimized unitary operator on a NMR spectrometer. By firstly generating a pseudo-pure state, a three-qubit cluster state was produced by applying the optimized unitary operator. Our experimental results show the feasibility of the optimized unitary operator.
出处 《波谱学杂志》 CAS CSCD 北大核心 2014年第1期108-115,共8页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(11005039)
关键词 核磁共振(NMR) cluster态 量子计算 NMR, cluster state, quantum computation
  • 相关文献

参考文献1

二级参考文献18

  • 1Gershenfeld N A,Chuang I L.Bulk spin-resonance quantum computation. Science . 1997 被引量:1
  • 2Madi,Z. L.Briischweiler, R.Ernst, R. R. One-and two-dimensional ensemble quantum computing in spin Liouville space, J. The Journal of Chemical Physics . 1998 被引量:1
  • 3Cirac J I,Zoller P.Quantum computations with cold trapped Ions. Physical Review Letters . 1995 被引量:1
  • 4Marx R,Fahmy A F,Myers J M,et al.Approaching five-bit NMR quantum computing. Physical Review A Atomic Molecular and Optical Physics . 2000 被引量:1
  • 5Bennett C H,DiVincenzo D P.Quantum Information and Computation. Nature . 2000 被引量:1
  • 6Jones J A.NMR Quantum Computation. Prog NMR Spectrosc . 2001 被引量:1
  • 7I.L. Chuang,N. Gershenfeld,M. Kubinec.Experimental implementation of fast quantum searching. Physical Review Letters . 1998 被引量:1
  • 8Vandersypen Lieven,Steffen Matthias,Breyta Gregory,Yannoni Costantino,Sherwood Mark,Chuang Isaac.Experimental realization of Shor‘s quantum factoring algorithm using nuclear magnetic resonance. Nature . 2001 被引量:1
  • 9D. G. Cory,M. D. Price,and T. F. Havel.Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D Nonlinear Phenomena . 1998 被引量:1
  • 10Warren,W. S.The usefulness of NMR quantum computing. Science . 1997 被引量:1

共引文献2

同被引文献30

  • 1李春燕,周宏余,汪燕,邓富国.Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations[J].Chinese Physics Letters,2005,22(5):1049-1052. 被引量:27
  • 2董建华,顾汉明,张星.几种时频分析方法的比较及应用[J].工程地球物理学报,2007,4(4):312-316. 被引量:50
  • 3Levitt M H. Spin Dynamics: Basics of Nuclear Magnetic Resonance[M]. John Wiley & Sons, 2013. 被引量:1
  • 4Bernstein M A, King K F, Zhou X J. Handbook of MRI Pulse Sequences[M]. Elsevier, 2004. 被引量:1
  • 5Reiss T O, Khaneja N, Glaser S J. Time-optimal coherence-order-selective transfer of in-phase coherence in heteronuclear is spin systems[J]. J Magn Reson, 2002, 154(2): 192-195. 被引量:1
  • 6Khaneja N, Reiss T, Luy B, et al. Optimal control of spin dynamics in the presence of relaxation[J]. J Magn Reson, 2003, 162: 311-319. 被引量:1
  • 7Khaneja N, Reiss T, Kehlet C, et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[J]. J Magn Reson, 2005, 172: 296-305. 被引量:1
  • 8Kehlet C T, Sivertsen A C, Bjerring M, et al. Improving solid-state NMR dipolar recoupling by optimal control[J]. J Am Chem Soc, 2004, 126(33): 10 202-10 203. 被引量:1
  • 9Tooner Z, Glaser S J, Khaneja N, et al. Effective hamiltonians by optimal control: Solid-state NMR double-quantum planar and isotropic dipolar recoupling[J]. J Chem Phys, 2006, 125(18): 184502. 被引量:1
  • 10Khaneja N, Glaser S J, Brockett R. Sub-riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer[J]. Phys Rev A, 2002, 65(3): 032301. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部