期刊文献+

SQL Server 2008在煤炭企业智能客户关系管理中的应用研究 被引量:2

Research of application of SQL Server 2008 in intelligent customer relationship management system of coal enterprises
下载PDF
导出
摘要 针对煤炭企业客户关系管理系统的信息化、智能化需求,提出了一种基于SQL Server 2008的煤炭企业智能客户关系管理系统的设计方案;给出了智能客户关系管理系统的数据挖掘流程,详细介绍了SQL Server 2008中的商业智能工具在煤炭企业智能客户关系管理系统中的应用,包括煤炭企业智能客户关系管理系统的集群部署结构及其软件架构。实例分析结果验证了该系统的可行性。 In view of requirements of informatization and intelligence of customer relationship management system of coal enterprises, the paper proposed a design scheme of intelligent customer relationship management system of coal enterprises based on SQL Server 2008. It gave data mining flow of the intelligent customer relationship management system, and detailedly introduced application of intelligent business tool of SQL Server 2008 in the intelligent customer relationship management system of coal enterprises, which includes structure of cluster deployment and software framework of the intelligent customer relationship management system of coal enterprises. The example analysis results validate feasibility of the system.
出处 《工矿自动化》 北大核心 2014年第3期98-102,共5页 Journal Of Mine Automation
基金 广西自然科学基金项目(2013GXNSFAA019336 2013GXNSFBA019280) 广西壮族自治区教育厅项目(201203YB124) 广西壮族自治区教改项目(2013JGA417) 广西科技大学科学基金项目(校科自1261128)
关键词 煤炭企业 智能客户关系管理 数据挖掘 SQL SERVER coal enterprises intelligent customer relationship management data mining SQL Server
  • 相关文献

参考文献8

二级参考文献14

  • 1席俊杰,吴中,徐颖.制造业设备前期管理中网络信息挖掘研究[J].制造业自动化,2004,26(10):20-22. 被引量:1
  • 2郑字军,杜家兴.SQL Server 2005 + Visual C# 2005专业开发精解[M].北京:清华大学出版社,2007:366-373. 被引量:1
  • 3Grabmeier J, Rudolph A. Techniques of Cluster Algorithms in Data Mining[J]. Data Mining and Knowledge Discovery,2002,6 (4) : 303 - 304. 被引量:1
  • 4Nan Jiawei, Kamber M. Data Mining: Concepts and Techniques [ M ]. San Francisco: Morgan Kaufmarm Publishers,2000:200 - 245. 被引量:1
  • 5Ester M,Kriegel H P,Sander J,et al. A Density - based Algorithm for Discovering Clusters in Large Spatial Databases [ C]//Proc. of 1996 Intl. Conf. on Knowledge Discovery and Data Mining. Portland, OR: [ s. n. ], 1996:226 - 231. 被引量:1
  • 6Ankerst M,Breuning M, Kfiegel H P, et al. Optics:Ordering Points to Identify the Clustering Structure[C]//Proc. of 1999 ACM - SIGMOD Intl. Conf. on Management of Data. Philadelphia,PA: [s. n. ], 1999. 被引量:1
  • 7Mac Queen J. Some methods for classification and analysis of multivariate observations [ C]//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: [s. n. ], 1967:281 - 297. 被引量:1
  • 8Goodman J. Leveraging the customer database to your competitive advantage [ J ]. Direct Marketing, 1992,55 ( 8 ) : 26 - 27. 被引量:1
  • 9Bult J R,Wansbeek T J. Optimal selection for direct mail[J]. Market ng Science, 1995,14(4) :378 - 394. 被引量:1
  • 10孟凡强,计算机世界,2000年 被引量:1

共引文献92

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部