摘要
本文应用阿基米德的内外正多边形逼近法和开普勒的无穷分割法,站在后人的肩膀上,运用极限理论,洛比达法则,以及收敛法则,夹逼法则,三角函数等近代数学的办法,来为开普勒对上述问题做个解释,从而验证圆的面积计算公式确实为S=πr2.
In this paper , by applying the regular polygon approximation method of Archimedes and the infinite partition method of Kepler Johannes, overlooking the previous by standing on the shoulder of the latter, we use the limit theorem, the Robita rule, the convergence rule, the clamping force principle,trigo- nometric function and more modern mathematics to experience. Also, the formula for calculating the area of a circle is validated.
出处
《湛江师范学院学报》
2013年第6期31-33,共3页
Journal of Zhanjiang Normal College
关键词
圆的面积计算
逼近
无穷分割
calculating of area of a circle; approximation; infinite partition