期刊文献+

基于改进的混合高斯模型的背景建模方法 被引量:3

A Background Modeling Method Based on Improved Mixture Gaussian Model
下载PDF
导出
摘要 提出了一种基于改进的混合高斯模型的背景建模方法,克服了经典混合高斯模型方法计算量大和对长时间静止物体转为运动及光照突变较为敏感的缺点。首先,在经典混合高斯模型方法的基础上,引入了一种新的高斯分布个数的自适应选择策略,提高了建模效率。其次,分析了经典混合高斯模型方法对长时间静止物体转为运动及光照突变较为敏感的原因,采用了一种不同区域更新率的自适应选择策略,能够迅速响应场景的变化,有效地解决了大面积误检问题。通过在典型的场景下与经典混合高斯模型方法进行比较,验证了本文算法的有效性。 The typical mixture Gaussian model method is computability of high cost and less robust to the conditions of sud-den moving of the motionless objects and the instant illumination changing. To solve this problem, a background modeling method based on improved mixture Gaussian model is presented in this paper. Firstly, to improve the efficiency of modeling, an adaptive selection strategy of the number of Gaussian distributions is proposed. Secondly, through of analyzing the cause why the typical mixture Gaussian model method is less robust to the conditions of sudden moving of the motionless objects and the instant illumination changing, present an adaptive selection strategy of the update rate for different regions to respond to the changing of scene and solve the large areas of false detection problem. Comparing with the typical mixture Gaussian model method on different image sequences containing targets of interest in typical environments. Experimental results demonstrate the effectiveness of the proposed method.
作者 栾胜利
机构地区 海军装备部
出处 《指挥控制与仿真》 2014年第1期84-87,99,共5页 Command Control & Simulation
关键词 运动目标检测 背景建模 混合高斯模型 moving object detection background modeling mixture Gaussian model
  • 相关文献

参考文献10

  • 1Lipton A, Fujiyoshi H, Patil R. Moving Target Classifica- tion and Tracking from Real Time Video [C ] // Proceedings of IEEE Workshop Applications of Computer Vision, Los Alamitos, CA, 1998:8-14. 被引量:1
  • 2Papenberg N, Bruhn A, Brox T, et al. Highly Accurate Optic Flow Computation with Theoretically Justified War- ping[J]. International Journal of Computer Vision, 2006, 67(2) :141-158. 被引量:1
  • 3王强,赵书斌.基于视频的运动目标检测算法的比较与分析[J].指挥控制与仿真,2012,34(6):36-40. 被引量:4
  • 4Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking [ C ] //Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, 1999:246-252. 被引量:1
  • 5Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction [ C ] //Proceedings of the 17th International Conference on Pattern Recognition, Cam- bridge, United Kingdom, 2004:28-31. 被引量:1
  • 6Wang H, Suter D. A Re-evaluation of Mixture-of-Gaussian Background Modeling[ C]//Proceedings of the 30th Inter-national Conference on Acoustics, Speech, and Signal Processing, Pennsylvania, USA, 2005:1017-1020. 被引量:1
  • 7Lee D S. Effective Gaussian Mixture Learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):827-832. 被引量:1
  • 8VSSN06 Dataset. [ EB/OL] .http://mmc36.informatik.uni- augsburg.de/VSSN06 OSAC/. 被引量:1
  • 9T. Bouwmans, F. E1 Baf, B. Vachon. Background Modeling Using Mixture of Gaussians for Foreground De- tection-a Survey Recent Patents on Computer Science, 2008, 1(3) :219-237. 被引量:1
  • 10Cristani M, Murino V. A Spatial Sampling Mechanism for Effective Background Subtraction[ C ]//Proceedings of the 2th International Conference on Computer Vision Theory and Applications, Barcelona, Spain, March, 2007 (2) : 403-410. 被引量:1

二级参考文献18

  • 1何卫华,李平,文玉梅,叶波.复杂背景下基于图像融合的运动目标轮廓提取算法[J].计算机应用,2006,26(1):123-126. 被引量:16
  • 2Collins R,Lipton A J,Kanade T,et al. A System forVideo Surveillance and Monitoring : Final Report [ R].Technical Report : CMU-RI-TR-00-12, Carnegie MelonUniversity, Pittsburgh, Peen, America, 2000. 被引量:1
  • 3Dubuisson M P,Lakshmanana S, Jain A K. Vehicle Seg-mentation and Classification Using Deformable Templates[J]. IEEE Transactions Pattern Analysis and MachineIntelligence, 1996,18(3) :293-308. 被引量:1
  • 4Stauffer C,Crimson W E L. Adaptive Background Mix-ture Models for Real-Time tracking [ C]. Proceeding ofthe IEEE International Conference on Computer Visionand Pattern Recognition, 1999(2) :246-252. 被引量:1
  • 5Ahmed Elgammal,Ramani Duraiswami, David Harwo-od,et al. Background and Foreground Modeling Using Non-parametric Kernel Density for Visual Surveillance [ C].Proceedings of the IEEE,2002 : 1151-1163. 被引量:1
  • 6Kim K Chalidabhongse T H, Harwood D. Real-time Fore-ground—Background Segmentation Using Codebook Model[J]. Real-Time Imaging, 2005,11(3) :172-185. 被引量:1
  • 7Alexei A Efros, Alexander C Berg, Greg Mori, et al.Recognizing Action at a Distance [ C] . International Con-ference on Computer Vision, 2003(2) :726-733. 被引量:1
  • 8You-shan Qu, Wei-Jian Tian, et al. Detecting SmallMoving Target in Image Sequences Using Optical FlowBased on the Discontinuous Frame Difference [ J]. Pro-ceedings of the SPIE-The International Society for OpticalEngineering, 2003 : 915-918. 被引量:1
  • 9Lipton A,Fujiyoshi H, Patil R. Moving Target Classifica-tion and Tracking from Real Time Video[ R]. In Proc:Workshop on Applications of Computer Vision, 1998. 被引量:1
  • 10Donovan H. Parks, Sidney S. Fels. Evaluation of Back-ground Subtraction Algorithm with Post-Processing [ C].In IEEE Fifth International Conference on Advanced Vid-eo & Signal Based Surveillance, 2008 : 192-199. 被引量:1

共引文献3

同被引文献17

  • 1Horn BK, Schunck BG. Determining optical flow. 1981Technical Symposium East. International Society for Optics and Photonics, 1981: 319-331. 被引量:1
  • 2Lipton AJ, Fujiyoshi H. Moving target classification and tracking from real-time video. Proc. IEEE Workshop on Applications of Computer. Princeton, NJ. 1998. 8-14. 被引量:1
  • 3Rymel J, Renno J, Greenhill D, et al. Adaptive eigenback- grounds for object detection. 2004International Conference on Image Processing(ICIP\'04). IEEE. 2004, 3. 1847-1850. 被引量:1
  • 4Wren CR, Azarbayejani A, Darrell T, et al. Pfinder: Real-time tracking of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785. 被引量:1
  • 5Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1999. IEEE. 1999. 246-252. 被引量:1
  • 6Gupte S, Masoud O, Martin RFK, et al. Detection and classification of vehicles. IEEE Trans. on Intelligent Transportation Systems, 2002, 3(1): 37-47. 被引量:1
  • 7Ren Y, Chua CS, Ho YK. Statistical background modeling for non-stationary camera. Pattern Recognition Letters, 2003, 24(1): 183-196. 被引量:1
  • 8许志良,周智恒,曹英烈,彭革新.关于运动目标检测的发展现状研究[J].移动通信,2008,32(12):35-38. 被引量:12
  • 9WAN ChengKai YUAN BaoZong MIAO ZhenJiang.A moving object segmentation algorithm for static camera via active contours and GMM[J].Science in China(Series F),2009,52(2):322-328. 被引量:2
  • 10刘静,王玲.混合高斯模型背景法的一种改进算法[J].计算机工程与应用,2010,46(13):168-170. 被引量:55

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部