期刊文献+

基于迭代用户选择的合作频谱感知算法 被引量:2

Cooperative spectrum sensing algorithm based on iterative users selection
原文传递
导出
摘要 针对认知无线电中经典频谱感知算法(能量检测、算术几何平均、信号特征值子空间、最大特征值检测)存在不同程度缺陷的问题,为了进一步提高频谱感知算法的检测性能,提出了基于迭代用户选择(iterative user selection,IUS)的合作频谱感知算法。该算法先对参与合作感知的全部认知用户进行选择,然后在选出的部分用户频谱观测数据的基础上,生成全局检验统计量(global decision statistic,GTS),以此做出授权用户(primary user,PU)信号是否存在的全局判决。仿真结果显示,在虚警概率保持不变的情况下,进行迭代用户选择后,合作频谱感知的检测概率要优于未进行用户选择时的算法。与经典频谱感知算法相比较,IUS的合作频谱感知算法不需要任何先验信息,且以较少的频谱观测数据达到较好的检测性能。 In order to deal with the drawbacks of different classical spectrum sensing algorithms ( e. g. energy detection, a- rithmetic to geometric mean, signal-subspaee eigenvalue, and maximum eigenvalue detection) and improve detection per- formanee of spectrum sensing algorithm, this paper proposes an iterative user selection (IUS) based cooperative spectrum sensing scheme for cognitive radios. The proposed IUS scheme firstly selects, among all the cooperative users monitoring the licensed spectrum simultaneously, the cognitive users to participate in the cooperative sensing procedure. Subsequently, based on the spectrum observations of the selected users, the fusion center generates the global decision statistic (GTS) to determine whether the PU signal exists or not. Simulation results show that under the criterion of constant false alarm proba- bility, the proposed IUS aided cooperative sensing algorithm yields improved detection probability compared to those without IUS. Compared with the classical spectrum sensing algorithms, iterative users selection (IUS) does not require a priori knowledge of the primary user signal, the channel state information, and the noise power and achieve a better detection per- formance with fewer spectrum observation data.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第1期18-24,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61201205) 重庆市自然科学基金(cstc2012jjA40043) 重庆邮电大学博士启动基金(A2012-06)~~
关键词 认知无线电 频谱感知 迭代用户选择 检测概率 cognitive radio spectrum sensing iterative users selection detection probability
  • 相关文献

参考文献4

二级参考文献39

  • 1李天昀,葛临东.两种快速频域细化分析方法的研究[J].系统工程与电子技术,2004,26(6):731-733. 被引量:14
  • 2刘进明,应怀樵.FFT谱连续细化分析的富里叶变换法[J].振动工程学报,1995,8(2):162-166. 被引量:128
  • 3王力,张冰,徐伟.基于MATLAB复调制ZOOM-FFT算法的分析和实现[J].舰船电子工程,2006,26(4):119-121. 被引量:26
  • 4丁康,潘成灏,李巍华.ZFFT与Chirp-Z变换细化选带的频谱分析对比[J].振动与冲击,2006,25(6):9-12. 被引量:55
  • 5CABRIC D, TKACHENKO A, BRODERSEN R W. Spectrum sensing measurements of pilot, energy, and collaborative detection [ C ]//Military Communications Conference, Oct. 23-25,2006, Washington DC, USA : [ s. n. ] , 2006 : 1-7. 被引量:1
  • 6ONER M, JONDRAL F. On the extraction of the channel allocation information in spectrum pooling systems [ J ]. IEEE Journal on Selected Areas in Communications, 2007, 25 (3) : 558-565. 被引量:1
  • 7TKACHENKO A, CABRIC D, BRODERSEN R W. Cy- clostationary feature detector experiments using reconfigutable BEE2 [ C ]//New Frontiers in Dynamic Spectrum Access Networks, Apr. 17-20,2007, Dublin, Ireland: [ s. n. ] , 2007 : 216-219. 被引量:1
  • 8LUNDEN J, KOIVUNEN V, HUTTUNEN A,et al. Spectrum sensing in cognitive radios based on multiple cyclic frequencies [ C ]//Cognitive Radio Oriented Wireless Networks and Communications, Orlando, USA, Jul. 31- Aug. 3, 2007, Orlando, USA:[s. n. ] ,2007. 被引量:1
  • 9GARDNER W A. Introduction to random process with applications to signals and systems [ M ]. New York : Macmillan, 1986:301-352. 被引量:1
  • 10GARDNER W M. Measurement of spectral correlation [ J ]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1986, 34 (5) : 1111-1123. 被引量:1

共引文献44

同被引文献20

  • 1MITOLA J, MAGUIRE G. Cognitive radio : making software software radios more Personal[J]. IEEE Pers Commun, 1999, 6(4): 13-18. 被引量:1
  • 2JOSEPH M. Cognitive Radio for Flexible Mobile Multimedia Communications[J]. Mobile Networks and Applications, 2001, 6(5): 435-441. 被引量:1
  • 3SHEN Bin, KWAK K S. Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks[J]. ETRI Journal, 2009, 31(3): 263-270. 被引量:1
  • 4URKOWITZ H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE, 1967, 55(4): 523-531. 被引量:1
  • 5SHEN J, LIU S. ZENG L. et al. Optimisation of cooperative spectrum sensing in cognitive radio network[J]. Communications , IET, 2009 , 3(7) : 1170-1178. 被引量:1
  • 6ZENG Yonghong, LIANG Yingchang. Eigen- value-based Spectrum Sensing Algorithms for Cognitive Radio[J]. Communications, IEEE Transactions on2009, 57(6)1784-1793. 被引量:1
  • 7ZHANG Rui, LIM Tengjong, LIANG Yingchang, et al. Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach[J]. Commu-nications, IEEE Transactions on, 2010, 58(1): 84-88. 被引量:1
  • 8ZENG Yonghong, LIANG Yingchang, ZHANG Rui. Blindly combined energy detection for spectrum sensing in cognitive radio[J]. Signal Processing Letters, IEEE, 2008, 15: 649-652. 被引量:1
  • 9KAY S. Exponentially embedded families-new approaches to model order estimation[J]. IEEE transactions on aerospace and electronic systems, 2005, 41(1): 333-345. 被引量:1
  • 10XU Cuichun, KAY S. Source Enumeration via the EEF Criterion[J]. Signal Processing Letters, IEEE, 2008, 15: 569-572. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部