摘要
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for study- ing the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and tough- ness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their single- component counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Single- component and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer con- centration was demonstrated for all systems. Alginate hydro- gels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhib- ited a combination of the mechanical properties of the con- stituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment.
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for study- ing the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and tough- ness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their single- component counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Single- component and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer con- centration was demonstrated for all systems. Alginate hydro- gels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhib- ited a combination of the mechanical properties of the con- stituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment.
基金
the National Institutes of Health-University of Cambridge Scholars Program
the laboratory of Dr.Constantine Stratakis at the National Institute of Child Health and Human Development at NIH