期刊文献+

动态贝叶斯网络的灵敏性分析研究 被引量:11

Research on Sensitivity Analysis for Dynamic Bayesian Networks
下载PDF
导出
摘要 灵敏性分析是研究复杂系统特性的一种重要方法.现有动态灵敏性分析方法都是针对特定类型的动态贝叶斯网络且计算复杂度高.为了对一般动态贝叶斯网络的灵敏性进行有效分析,提出了一种基于联合树的动态灵敏性分析算法(DSA_JT),DSA_JT算法构建动态网络的联合树,通过消息传播建立参数与目标结点的条件概率分布在时间上的函数关系;DSA_JT将联合概率分布分解成局部概率因式形式,通过降低计算幂次提升计算效率,但计算复杂度仍然偏高.为了更有效地提高动态贝叶斯网络灵敏性分析的计算性能,在DSA_JT算法的框架上提出了DSA_BK算法,DSA_BK算法在灵敏性函数计算过程中,用子系统的概率乘积近似整个系统的联合概率,通过对接口结点局部性的边缘化操作更新模型的联合概率分布,进一步降低了计算幂次,并论证了DSA_BK算法误差的有界性.进而,通过对这两种算法过程的抽象,分别给出了动态灵敏度函数计算公式的证明,表明2种算法可以有效处理一般动态贝叶斯网络的灵敏性分析问题.最后,在上证股票网络上的实验结果显示这2种算法的有效性. Sensitivity analysis is an important method for researching the characteristic of complex system. The present algorithms of dynamic sensitivity analysis are used to deal with some special kinds of dynamic Bayesian network and their computation complexity is very high. Therefore, in order to handle the sensitivity analysis on general dynamic Bayesian network effectively, a new algorithm is presented based on junction-tree algorithm (DSA_JT). The function relations between parameters and conditions probability distribution of object node are established by message-propagation on junction- tree. DSA_JT can lower exponential time and reduce calculation significantly. But its computation complexity is still high. In order to further improve the computational performance, DSA_BK is introduced based on DSA_JT algorithm. DSABK introduces the factor idea with the product of the probability of the subsystems to approximate the probability of the whole system. DSA_BK reduces the size of the root by the local marginalisation of interface and updating the joint probability distribution of model. Compared with DSA_JT, DSA_BK can lower the computational exponential times further and significantly improves the calculation efficiency, and the error is bound to be proved. Then, based on abstracting the process of the two algorithms, the computation formulas of dynamic sensitivity function are proved, and it is shown that the two algorithms can effectively deal with sensitivity analysis of general dynamic Bayesian network. Finally, the effectiveness is proved in the experiment on the network of the Shanghai Stock.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第3期536-547,共12页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61175051 61070131 61175033) 国家"九七三"重点基础研究发展计划基金项目(2013CB329604)
关键词 动态贝叶斯网络 灵敏性分析 DSA_BK算法 DSA_JT算法 动态灵敏度函数 dynamic Bayesian network sensitivity analysis DSA_BK algorithm DSA_JT algorithm dynamic sensitivity function
  • 相关文献

参考文献16

  • 1Laskey K B. Sensitivity analysis for probability assessments in Bayesian networks[J].IEEE Transactions on Systems Man and Cybernetics,1995,(06):901-909. 被引量:1
  • 2Weiss R E. An Approach to Bayesian sensitivity analysis[J].Journal of the Royal Statistical Society Series B(Methodological),1996.593-607. 被引量:1
  • 3Wang Haiqin. Building Bayesian networks:Elicitation,evaluation,and learning[D].Pittsburgh:University of Pittsburgh,2004. 被引量:1
  • 4Mitrophanov A Y,Lomsadze A,Borodovsky M. Sensitivity of hidden Markov models[J].Journal of Applied Probability,2005,(04):632-642. 被引量:1
  • 5Murphy K,Weiss Y. The factored frontier algorithm for approximate inference in DBNs[A].San Francisco,CA:Morgan Kaufmann,2001.378-385. 被引量:1
  • 6Coupe'V M H,Jensen F V,Kjaerulff U. A computational architecture for n-way sensitivity analysis of Bayesian networks[OL].Rotterdam:Department of Public Health,Eramus University Rotterdam,2000. 被引量:1
  • 7Hartman T,Sharan R. A simpler and faster 1.5-approximation algorithm for sorting by transpositions[J].INFORMATION AND COMPUTATION,2006,(04):275-290. 被引量:1
  • 8Weiss R E. An approach to Bayesian sensitivity analysis[J].Journal of the Royal Statistical Society,1996,(04):739-750. 被引量:1
  • 9Charitos T,Linda C. Sensitivity analysis for threshold decision making with dynamic networks[A].Arlington,Virginia:AUAI Press,2006.72-79. 被引量:1
  • 10柳永坡,吴际,金茂忠,杨海燕,贾晓霞,刘雪梅.基于贝叶斯统计推理的故障定位实验研究[J].计算机研究与发展,2010,47(4):707-715. 被引量:9

二级参考文献17

  • 1李诺,金茂忠,刘超.一种Java程序度量工具的设计实现[J].电子学报,2004,32(F12):175-179. 被引量:2
  • 2Zeller A,Hildebrandt R.Simplifying and isolating failure-inducing input[J].IEEE Trans on Software Engineering,2002,28(2):183-200. 被引量:1
  • 3Harrold M J,Rothermel G,Sayre K,et al.An empirical investigation of the relationship between spectra differences and regression faults[J].Journal of Software Testing,Verification,and Reliability,2000,10(3):171-194. 被引量:1
  • 4Morell L J.A theory of fault-based testing[J].IEEE Trans on Software Engineering,1990,16(8):844-857. 被引量:1
  • 5Voas J M.PIE:A dynamic failure-based technique[J].IEEE Trans on Software Engineering,1992,18(8):717-727. 被引量:1
  • 6Jones J A,Harrold M J,Stasko J.Visualization of test information to assist fault localization[C]//Proc of the 24th Int Conf on Software Engineering(ICSE 2002).New York:ACM,2002:467-477. 被引量:1
  • 7Kusumoto S,Nishimatsu A,Nishie K,et al.Experimental evaluation of program slicing for fault localization[J].Empirical Software Engineering,2002,7(1):49-76. 被引量:1
  • 8Francel M A.Fault localization through execution traces[D].Atlanta:Georgia Institute of Technology,2002. 被引量:1
  • 9Renieris M,Reiss S P.Fault localization with nearest neighbor queries[C]//Proc of the 18th IEEE Int Conf on Automated Software Engineering (ASE 2003).Los Alamitos,CA:IEEE Computer Society,2003:30-39. 被引量:1
  • 10Jones J A,Harrold M J.Empirical evaluation of the Tarantula automatic fault-localization technique[C]//Proc of the 20th IEEE/ACM Int Conf on Automated Software Engineering (ASE 2005).New York:ACM,2005:273-282. 被引量:1

共引文献8

同被引文献84

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部