摘要
制备了结构为ITO/MoO3(40nm)/NPB(40nm)/TCTA(10nm)/CBP∶GIR1(14%)(x)/CBP∶R-4B(6%)(30-x)/BCP(10nm)/AlQ(40nm)/LiF(1nm)/AL(100nm)的绿红磷光器件。通过调节红绿发光层的相对厚度,对器件的发光性能进行了研究。结果表明:x为15nm,电压为6V,电流密度为255.6mA/cm2,得到最高电流效率为15.4cd/A,红色发光峰值强度相对较大,绿色峰值稍弱的电致发光光谱。分析原因可能是掺杂染料与临近层的能级匹配和浓度等会影响发光层载流子注入与传输;空穴及电子阻挡层对发光层内载流子和激子的有效限制作用会提高掺杂染料在发光层的复合几率;另外,CBP的空穴迁移率大于电子迁移率,发光的主要区域位于发光层与BCP界面,掺杂于该区域的R-4B具有较高的发光强度。
The phosphorescent devices(green and red),which structure was ITO/MoO3 (40 nm)/NPB (40 nm)/TCTA (10 nm)/CBP:GIR1 (14%)(x)/CBP:R-4B (6%) (30-x)/BCP (10 nm)/AlQ (40 nm)/LiF (1 nm)/AL (100 nm),were prepared.Double emitting layer(green and red) is organic electroluminescent phosphorescent devices,which was regulated at carrier. The results showed that doping order was green, red, (green (red) was 15 nm (15 nm)), at 6 V, current density was 255.6 mA/cm2, the maximum current efficiency was 15.4 cd/A. In addition, because of utilization the green red doping behavior, red (R-4B) emitting peak was easier to appear, and ultimately the red dye possessed relatively large emitting intensity and weak green light-emitting. Analysis of the reason may be carrier injection and carrier mobility of balance and BCP control effect.
出处
《液晶与显示》
CAS
CSCD
北大核心
2014年第1期22-27,共6页
Chinese Journal of Liquid Crystals and Displays
基金
国家自然科学基金(No.61076066)
陕西省科技统筹创新工程计划项目(No.2011KTCQ01-09)