期刊文献+

7次PH曲线的控制多边形的几何性质 被引量:5

Geometric Properties of Control Polygon of Septic PH Curve
下载PDF
导出
摘要 基于PH曲线的定义以及平面曲线的复数表示,探讨了7次Bézier曲线是PH曲线的充要条件.根据速端曲线的2个分量的最大公因式的次数,7次PH曲线被自然地分类4类;针对每一类7次PH曲线,分别用控制多边形的几何量表出了它们的几何性质.此外,为了避免引入坐标系,提出一种降阶的算法,利用控制多边形的几何量来求解速端曲线的2个分量的最大公因式. Based on the definition of PH curve and complex representation of planar curve,the sufficient and necessary conditions for septic Bézier curve are explored to possess Pythagorean Hodograph.Septic PH curves are divided into four categories on the basis of the degree of greatest common divisor of two components of their hodograph.Concerning each type of septic PH curves,their geometric properties are expressed in terms of geometric magnitudes of control polygon.Besides,in order to avoid introducing coordinate system,an order reduction method is proposed to compute the greatest common divisor of hodograph using geometric magnitudes of control polygon.
作者 杨平 汪国昭
机构地区 浙江大学数学系
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期378-384,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60933008 61272300)
关键词 PH曲线 控制多边形 几何性质 最大公因式 septic PH curve control polygon geometric property greatest common divisor
  • 相关文献

参考文献7

二级参考文献77

  • 1雍俊海,郑文.一类五次PH曲线Hermite插值的几何方法[J].计算机辅助设计与图形学学报,2005,17(5):990-995. 被引量:19
  • 2Blinn J E. How many ways can you draw a circle? [J]. IEEE Computer Graphics and Applications, 1987, 7(8) : 39-44. 被引量:1
  • 3de Boor C, Holling K, Sabin M. High accuracy geometric Hermite interplation [J]. Computer Aided Geometrie Design, 1987, 4(3): 269-278. 被引量:1
  • 4Floater M. High order approximation of conic sections by quadratic splines [J]. Computer Aided Geometric Design, 1995, 12(6): 617-637. 被引量:1
  • 5Morken K. Best approximation of circle segments by quadratic Bezier curves [M] //Laurent P J, Le Mehaute A, Schumaker L L. Curves and Surfaces. New York: Academic Press, 1991:331-336. 被引量:1
  • 6Jaklic G, Kozak J, Krajnc M, et al. Approximation of circular arcs by parametric polynomial curves [J]. Annali dell'Universita di Ferrara, 2007, 53(2): 271-279. 被引量:1
  • 7Peters G J. Interactive computer graphics application of the bi-eubie parametric surface to engineering design problems [M] //Barnhill R E, Riesenfeld R F. Computer Aided Geometric Design. New York: Academic Press, 1974: 259- 302. 被引量:1
  • 8Dokken T, Daehlen M, Lyche T, etal. Good approximation of circles by curvature-continuous B&zier curves[J]. Computer Aided Geometric Design, 1990, 7(1): 33-41. 被引量:1
  • 9Goldapp M. Approximation of circular arcs by cubic polynomials[J].Computer Aided Geometric Design, 1991, 8 (3) : 227-238. 被引量:1
  • 10Ahn Y J, Kim H O. Approximation of circular arcs by Bezier [J]. Journal of Computational and Applied Mathematics, 1997, 81(1): 145-163. 被引量:1

共引文献40

同被引文献45

  • 1雍俊海,郑文.一类五次PH曲线Hermite插值的几何方法[J].计算机辅助设计与图形学学报,2005,17(5):990-995. 被引量:19
  • 2AHN Y J. Approximation of conic section by curvature continuous quartic Bezier curves [J]. Computers and Mathe- matics with Applications, 2010,60(7):1986 - 1993. 被引量:1
  • 3FANG L. G3 approximation of conic sections by quintic polynomial curves [J]. Computer Aided Geometric De- sign,1999, 16(8):755-766. 被引量:1
  • 4FLOATER M. High-order approximation of conic see tions by quadratic splines [J]. Computer Aided Geomet- ric Design,1995, 12(6) : 617 - 637. 被引量:1
  • 5FLOATER M. An O(h2n) Hermite approximation for conic sections [J]. Computer Aided Geometric Design, 1997,14(2): 135-151. 被引量:1
  • 6KIM S H, AHN Y J. An approximation of circle arcs by quartic Bezier curves [J]. Computer-Aided Design, 2007, 39(6): 490-493. 被引量:1
  • 7AHN Y J. Helix approximations with conic and quad- ratic Bezier curves [J]. Computer Aided Geometric De- sign, 2005, 22(6): 551-565. 被引量:1
  • 8FAROUKI R T. The conformal map z--z2 of the hodo graph plane [J]. Computer Aided Geometric Design, 1994, 11(4): 363-390. 被引量:1
  • 9LI Y J, DENG C Y. 2012. C-shaped C2 Hermite inter- polation with circular precision based on cubic PH curve interpolation [ J ]. Computer-Aided Design, 2012: 44(11), 1056-1061. 被引量:1
  • 10MEEK D S, WALTON D J. Geometric Hermite inter- polation with Tschirnhausen cuhics [J]. Journal of Com- putational and Applied Mathematics, 1997, 81 ( 2 ): 299 - 309. 被引量:1

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部