期刊文献+

时隙配置下TD-LTE异构网络干扰抑制仿真研究 被引量:2

Simulation research of interference suppression in TD-LTE of heterogeneous network based on slot configuration
下载PDF
导出
摘要 为了更有效地抑制在TD-LTE异构网络和家庭基站系统中引入灵活时隙配置技术所带来的干扰,通过建立TDLTE系统上行仿真平台,对家庭基站用户在不同时隙配置下的几种干扰抑制技术的性能进行了仿真研究。仿真结果表明,家庭基站用户的分布范围会影响家庭基站的干扰抑制性能,且家庭基站间的灵活的频率复用技术可有效地提升家庭基站干扰抑制性能。 To suppress the interference from using a flexible slot configuration technology in the TD-LTE heterogeneous net- works which are consisted of femtocell base stations effectively, through building the TD-LTE system uplink simulation platform which simulates the uptink interference of the femtocells when different time slots are used. The result shows that the distribu- tion range of the femtocell users will affect its interference rejection performance, and frequency reuse technology between femto- cells can effectively enhance the femtocells' interference suppression performance.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第3期1005-1009,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61001068) 广州番禺区科技计划基金项目(2011-Z-01-07) 教育部博士点基金项目(20100094120017)
关键词 分时长期演进 时隙配置 干扰抑制 家庭基站 仿真研究 TD-LTE slot configuration interference suppression femtocell simulation research
  • 相关文献

参考文献12

  • 1Hofmann T,Scholkopf B,Smola A J.Kernel methods in machine leaming[J] .Annals of Statistics,2008,36 (3):1171-1220. 被引量:1
  • 2Zhuang J,Tsang I W,Hoi S C H.SimpleNPKL:Simple nonparametric kernel learning[C] //Proceedings of Interational Conference on Machine Learning,2009. 被引量:1
  • 3Gonen M,Alpaydin E.Localized multiple kernel learning[C] // Proceedings of International Conference on Machine Learning,2008:352-359. 被引量:1
  • 4Hoi S C H,Jin R.Active kernel learning[C] //Proceedings of International Conference on Machine Learning,2008:400-407. 被引量:1
  • 5Ying Y,Campbell C,Girolami M.Analysis of SVM with indefinite kernels[C] //Advances in Neural Information Processing Systems,2010. 被引量:1
  • 6Li F,Fu Y,Dai Y H,et al.Kernel learning by unconstrained optimization[C] //Proceedings of International Conference on Artificial Intelligence and Statistics,2009. 被引量:1
  • 7Sonnenburg S,Ratsch G,Schafer C.A general and efficient multiple kernel leaming algorithm[C] // Advances in Neural Information Processing Systems,2006. 被引量:1
  • 8Gonen M,Alpaydin E.Localized multiple kernel learning[C]// Proceedings of International Conference on Machine Learning,2008:352-359. 被引量:1
  • 9Sonnenburg S,Ratsch G,Schafer C,et al.Large scale multiple kernel learning[J] .Journal of Machine Learning Research,2006 (7):1531-1565. 被引量:1
  • 10Varma M,Babu B R.More generality in efficient multiple kernel learning[C] // Proceedings of Interational Conference on Machine Learning,2009. 被引量:1

同被引文献20

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部