期刊文献+

超大观测网络及多GNSS系统的快速数据处理 被引量:12

Rapid Data Processing of Huge Networks and Multi-GNSS Constellation
原文传递
导出
摘要 采用IGS全球约110个多模观测站4周的观测数据,在不同采样间隔下进行精密定轨数据处理。分析了不同采样间隔下产品的精度以及数据处理的耗时情况。大量计算结果表明:①随着数据采样间隔的增加,数据处理时间呈线性减少的趋势。本文表明,采用15min采样间隔比5min采样间隔计算效率最多可以提高50%以上。②数据采样间隔的变化对轨道、钟差、ERP参数、参考框架等解算参数的影响很小。当采样间隔为5~10min时,基本上没有影响。为分析不同采样间隔产品对用户定位的影响,采用了全球22个测站4周的数据进行PPP静态定位,并且采用GRACE卫星1周的数据进行运动学精密定轨。采用不同轨道、钟差的静态结果表明,不同产品对水平方向精度的影响小于2mm,高程方向精度的影响小于6mm。GRACE卫星动态定位结果表明,不同产品对各个方向精度的影响小于1.5cm,三维位置的影响小于2cm。本文结论对于当前测站个数〉250的非差数据处理有拳考意义。 In the first part of the paper we discuss the challenges of huge networks and multi-GNSS da- ta processing for the zero-difference(ZD) strategy. Using 4 weeks' of data from global IGS GPS/ GLONASS stations, we performed daily data processing with data sampling ranging from 5-15 min. A comparison of the processing time and product precision under different sampling data shows: ① Computation efficiency is greatly improved by increasing data sampling; our results show the improve- ment of maximum 52%; ② Difference of product precision was marginally observed, and product pre- cision is almost the same when the sampling rate was changed from 5-10 min. To analyze the impact of different products on positioning applications, we performed PPP for 22 globally distributed IGS sta- tions and kinematic precise orbit determination for GRACE satellites using products generated from different data sampling procedures. Results show: ①Static PPP precision differs by less than 2 mm and 6 mm for the horizontal and height components, respectively; ②kinematic PPP precision differs by less than 1.5 cm for each coordinate component and less than 2 cm in three-dimensions.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第3期253-257,共5页 Geomatics and Information Science of Wuhan University
基金 中科院百人计划资助项目 国家863计划资助项目(2013AA122402) 国家自然科学基金资助项目(11273046 40974018 41174024) 上海市科委资助项目(12DZ2273300 13PJ1409900)~~
关键词 GNSS SHA 分析中心 采样间隔 效率 GNSS SHA analysis center data sampling efficiency
  • 相关文献

参考文献8

  • 1Dach R,Hugentobler U,Fridez P. Bernese GPS Software Version 5.0[M].Bern:Astronomical Institute,University of Bern,2007. 被引量:1
  • 2Ge M,Gendt G,Dick G. A New Data Processing Strategy for Huge GNSS Global Networks[J].J Goed,2006.199-203. 被引量:1
  • 3Bock H,Dach R,Jaggi A. High-rate GPS Clock Corrections from CODE:Support of 1 Hz Applications[J].J Geod,2009.1083-1094. 被引量:1
  • 4ChenJ,Wu B,Hu X. SHA:the GNSS Analysis Center at SHAO[J].Lecture Notes in Electrical Engineering,2012.213-221. 被引量:1
  • 5McCarthy D,Petit G. IERS Conventions.IERS Technical Note 32[M].Bundesamt für Kartographie und Geod(a)sie,Frankfurt am Main,2003. 被引量:1
  • 6Chen J,Zhang Y,Zhou X. GNSS Clock Corrections Densification at SHAO:from 5 min to 30 s[J].Science China:Physics Mechanics & Astronom y,. 被引量:1
  • 7陈俊平;吴斌;胡小工.上海天文台陆态网络数据分析中心[A],2012. 被引量:1
  • 8彭冬菊,吴斌.基于双频星载GPS数据的LEO卫星运动学定轨研究[J].天文学报,2011,52(6):495-509. 被引量:8

二级参考文献20

  • 1Bertiger W I, Bar-Sever Y E, Christensen E J, et al. JGR, 1994, 99:24449. 被引量:1
  • 2Peng D J, Wu B. ChSBu, 2007, 52:2024. 被引量:1
  • 3Peng D, Wu B. ChSBu, 2009, 54:196. 被引量:1
  • 4Peng D J, Wu B. ChJAA, 2008, 8:603. 被引量:1
  • 5Svehla D, Rothacher M. AdG, 2003, 1:47. 被引量:1
  • 6Kang Z, Nagel P, Pastor R. AdSpR, 2003, 31:1875. 被引量:1
  • 7Montenbruck O. Aerospace Science and Technology, 2003, 7:396. 被引量:1
  • 8Bisnath S B, Langley R B. Precise Orbit Determination of Low Earth Obiters with GPS Point Positioning. ION National Technical Meeting, January 22-24, 2001. 被引量:1
  • 9Colombo O L, Luthcke S B. Kinematic Point Positioning of a LEO with Simultaneous Reduced-dynamic Orbit Estimation. ION National Technical Meeting, September, 2004. 被引量:1
  • 10Svehla D, Rothacher M. AdSpR, 2005, 36:376. 被引量:1

共引文献7

同被引文献84

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部