摘要
文章引入了S-亚紧空间,并且获得3个主要结果:(1)如果(X,(y))是一个S-亚紧的T2空间,则对X中的任意一个闭集A和不属于A的任一点x,存在U∈(y),V∈SO(X,(y))使x∈U,ACV且U∩V=(O).(2)如果(X,(y)α)是S-亚紧的,则(X,(y))是S-亚紧的.(3)(X,(y))是一个极不连通的T2空间,则(X,(y))是S-亚紧的当且仅当X的每个开覆盖(b)有一个点有限的正则闭加细(V)V∈RC(x,(Y).
The notion of S-weak paracompact is introduced and the following results are mainly proved: ( 1 ) If (X,y) is a S-weak paracompact T2-space, then for every closed subset A of X and x A, there exist U ∈y and V∈ SO (X,y) such that x ∈ U, A ∈ V and UAV = 0; (2) If (X,y) is S-weak paracompact then (X,y) is S-weak paracompact; (3) Let (X,y) be a extremely disconnected T2-spaee. Then (X,y) is S-weak paraeompact if and only if each open cover V of X has a locally finite regular-closed refinement V, V∈ RC(X,y)
出处
《四川理工学院学报(自然科学版)》
CAS
2014年第1期98-100,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
安徽省高等学校省级优秀青年人才基金项目(2010SQRL158)
关键词
半开集
极不连通
S-亚紧
α-集
semi-open sets
extremely disconnected
S-weak paracompact
α-sets