期刊文献+

大鼠前庭核团中与线性运动相关的神经发育状况(英文)

Development of neural correlates of linear motion in the rat vestibular nucleus
原文传递
导出
摘要 中枢前庭系统拥有处理从内耳传入外周感觉信息的能力,这令动物能够在三维空间中感知头部朝向,并同时能调节运动姿势。在发育中,前庭核团神经元的电生理特性发生很大的改变;膜的兴奋性程度随着年龄而增长,这一特性是与这些神经元逐渐增加发放频率以及加强放电模式规律性同步发生的。前庭核团神经元对感知水平和垂直线性运动的编码能力在发育过程中也做了非常大的完善。这些发育中的前庭核团神经元表面受体,比如谷氨酸受体,亦会随着动物成熟过程做出表达调整,用以调控突触传递可塑性的效率,进而影响这些神经元在神经回路中处理空间编码的能力。总而言之,前庭核团神经元的这些特征有助脑部于发育过程中建立三维空间坐标的能力。 The capability of the central vestibular system in utilizing cues arising from the inner ear determines the ability of animals to acquire the sense of head orientations in the three-dimensional space and to shape postural movements. During development, neu- rons in the vestibular nucleus (VN) show significant changes in their electrophysiological properties. An age-dependent enhancement of membrane excitability is accompanied by a progressive increase in firing rate and discharge regularity. The coding of horizontal and vertical linear motions also exhibits developmental refinement in VN neurons. Further, modification of cell surface receptors, such as glutamate receptors, of developing VN neurons are well-orchestrated in the course of maturation, thereby regulating synaptic efficacy and spatial coding capacity of these neurons in local circuits. Taken together, these characteristic features of VN neurons contribute to developmental establishment of space-centered coordinates within the brain.
出处 《生理学报》 CAS CSCD 北大核心 2014年第1期37-46,共10页 Acta Physiologica Sinica
基金 supported by grants of the Hong Kong Research Grants Council(HKU 761409,761710,761711,761812)
关键词 空间识别 前庭核团 耳石器官 线性加速 发育 spatial recognition vestibular nucleus otolith organs linear acceleration development
  • 相关文献

参考文献112

  • 1Buttner-Ennever JA. A review of otolith pathways to brain?stem and cerebellum. Ann N Y Acad Sci 1999; 871: 51-64. 被引量:1
  • 2Chan YS, Lai CH, Shum DK. Spatial coding capacity of central otolith neurons. Exp Brain Res 2006; 173(5): 205- 214. 被引量:1
  • 3Bergquist F, Ludwig M, Dutia MB. Role of the commis?sural inhibitory system in vestibular compensation in the rat. J Physio12008; 586(18): 4441-4452. 被引量:1
  • 4Chan YS. The coding of head orientations in neurons of bi?lateral vestibular nuclei of cats after unilateral labyrinthec?tomy: response to off-vertical axis rotation. Exp Brain Res 1997; 114(2): 293-303. 被引量:1
  • 5Chan YS, Shum DK, Lai CH. Neuronal response sensitivity to bidirectional off-vertical axis rotations: a dimension of imbalance in the bilateral vestibular nuclei of cats after uni?lateral labyrinthectomy. Neuroscience 1999; 94(3): 831- 843. 被引量:1
  • 6Curthoys IS. Vestibular compensation and substitution. CUff Opin Neuro12000; 13(1): 27-30. 被引量:1
  • 7Clarac F, Vinay L, Cazalets JR, Fady JC, Jamon M. Role of gravity in the development of posture and locomotion in the neonatal rat. Brain Res Brain Res Rev 1998; 28(1-2): 35-43. 被引量:1
  • 8Shinoda Y, Ohgaki T, Sugiuchi Y, Futami T. Structural basis for three-dimensional coding in the vestibulospinal reflex. Morphology of single vestibulospinal axons in the cervical cord. Ann N Y Acad Sci 1988; 545: 2 I 6-227. 被引量:1
  • 9Day BL, Reynolds RF. Vestibular reafference shapes volun?tary movement. CUff Bioi 2005; 15(15): 1390-1394. 被引量:1
  • 10Telford L, Seidman SH, Paige GD. Canal-otolith interac?tions driving vertical and horizontal eye movements in the squirrel monkey. Exp Brain Res 1996; 109(3): 407-418. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部