期刊文献+

一种基于压缩感知的入侵检测方法 被引量:10

An Intrusion Detection Method Based on Compressed Sensing
下载PDF
导出
摘要 网络入侵检测必须面对海量的数据获取和处理,压缩感知理论能够直接、快速压缩采集网络中的数据流.提出一种基于压缩感知的入侵检测方法,该方法通过对访问数据的压缩采样,获取正常和异常行为的特征数据.这种数据处理方式避开了大量的数据处理,直接获取特征,这对于网络入侵检测需要进行高维的数据处理过程来说,大大节省了处理时间,为实现实时的入侵检测提供了重要的技术手段. Network intrusion detection often confronts the challenge of the acquisition and processing of da ta with huge volumes. Compressed sensing makes it possible to directly and rapidly compress the dala stream collected from network. The present paper proposes an intrusion detection technique based oncom pressed sensing that is able to acquire both normal and abnormal feature data through compressive sam pling on the access data. This technique effectively avoids processing large amount of data by means of di rect acquisition of the feature. As far as high-dimensional data processing is concerned, this method signif icantly saves the processing time and serves as an important means to achieve real time intrusion detection.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期186-192,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然基金资助项目(61170192) 中央高校基本科研业务费专项资金资助(CDJXS11180007 XDJK2120131037)
关键词 入侵检测 压缩感知 重构 稀疏采样 intrusion detection: compressed sensing reconstruction sparse sampling
  • 相关文献

参考文献9

  • 1MACIA X PE REZ F, MORA-GIMENO F, MARCOS-JORQUERA D, GII. M, NEZ-ABARCA J A, et al. Network Intrusion Detection System Embedded on a Smart Sensor EJ:. Industrial Electronics, IEEE Transactions on, 2011, 58(3): 722-732. 被引量:1
  • 2HOFMANN A, SICK B. Online Intrusion Alert Aggregation with Generative Data Stream Modeling [J]. Dependable and Secure Computing, IEEE Transactions on, 2011, 8(2): 282-294. 被引量:1
  • 3CANDES E J, ROMBERG J K, TAO T. Stable Signal Recovery from Incomplete and Inaccurate Measurements [J].Commun Put Appl Math, 2006, 59(8): 1207-1223. 被引量:1
  • 4CANDI);S E J, WAKIN M B. An Introduction to Compressive Sampling [J]. Ieee Signal Proc Mag, 2008, 24(4): 118-121. 被引量:1
  • 5许志强.压缩感知[J].中国科学:数学,2012,42(9):865-877. 被引量:59
  • 6杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148. 被引量:121
  • 7DONOHO D, TANNER J. Observed Universality of Phase Transitions in High-Dimensional Geometry, with Implica- tions for Modern Data Analysis and Signal Processing [J]. Philos T R Soc A, 2009, 367(1906) : 4273-4293. 被引量:1
  • 8ZHANG T. Sparse Recovery With Orthogonal Matching Pursuit Under RIP [J].Ieee T Inform Theory, 2011, 57(9): 6215-6221. 被引量:1
  • 9CANDES E J. The Restricted Isometry Property and Its Implications for Compressed Sensing [J]. Cr Math, 2008, 316(9/10): 589- 592. 被引量:1

二级参考文献80

  • 1D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306. 被引量:1
  • 2M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598. 被引量:1
  • 3I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457. 被引量:1
  • 4T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274. 被引量:1
  • 5A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161. 被引量:1
  • 6E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509. 被引量:1
  • 7E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308. 被引量:1
  • 8S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415. 被引量:1
  • 9E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215. 被引量:1
  • 10S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale ly-regularized least-squares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007,7 ( 8 ) : 1519 - 1555. 被引量:1

共引文献175

同被引文献66

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2王旭仁,许榕生.基于机器学习的入侵检测系统研究[J].计算机工程,2006,32(14):107-108. 被引量:4
  • 3ELAD M, MILANFAR P, RUBINSTNIN R. Analysis Versus Synthesis in Signal Priors [J]. Inverse Problems, 2007, 23(3): 947-968. 被引量:1
  • 4SUSTIK M, TROPP J, DHILLON 1. et al. On the Existence of Equiangular Tight Frames [J]. Linear Algebra and Its Applications, 2007, 426(2/3): 619-635. 被引量:1
  • 5JACQUES L, DE VLEESCHOUWER C. A Geometrical Study of Matching Pursuit Parametrization [J]. IEEE Trans. Signal Processing, 2008, 56(7): 2835-2848. 被引量:1
  • 6GUNAWARDANA A, BYRNE W. Convergence Theorems for Generalized Alternating Minimization Procedures [J]. The Journal of Machine Learning Research, 2005(6) : 2049-2073. 被引量:1
  • 7GEDALYAHU K, TUR R, ELDAR Y C. Multichannel Sampling of Pulse Streams at the Rate of Innovation [J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1491-1504. 被引量:1
  • 8TUR R, ELDAR Y C, FRIEDMAN Z. Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Ima- ging [J]. IEEE Transactions on Signal Processing. 2011, 59(4): 1827- 1842. 被引量:1
  • 9GRIBONVAL R, NIELSEN M. Sparse Representations in Unions of Base [J]. IEEE Transactions on Information Theo- ry, 2003, 49(12): 3320-3325. 被引量:1
  • 10BLUMENSATH T, DAVIES M. Gradient Pursuits [J]. IEEE Transactions on Information Theory, 2008, 56 (6): 2370-2382. 被引量:1

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部