期刊文献+

解糖热解纤维素菌F32降解未预处理秸秆及产纤维素酶特性分析 被引量:2

Degradation of unpretreated wheat straw by Caldicellulosiruptor saccharolyticus F32 and its enzyme characteristics
原文传递
导出
摘要 【目的】明确极端嗜热厌氧木质纤维素降解菌解糖热解纤维素菌F32代谢特征,并分析其产酶特性。【方法】使用细胞计数法绘制菌株的生长曲线,使用离子色谱及气相色谱进行产物和残糖量分析,以DNS法及对硝基苯酚法检测菌株胞外蛋白的酶活性。【结果】解糖热解纤维素菌F32在以葡萄糖、微晶纤维素和未经预处理小麦秸秆为碳源时生长状况优于解糖热解纤维素菌DSM 8903。在以葡萄糖为碳源进行培养时,与菌株DSM 8903相比,菌株F32具有产乳酸较多,而产氢气较少的特点。在以微晶纤维素和未经预处理小麦秸秆为碳源进行培养时,与菌株DSM 8903相比,菌株F32胞外蛋白具有较高的内切纤维素酶活性和木聚糖酶活性。【结论】解糖热解纤维素菌F32表现出较强的木质纤维素降解能力,其与DSM 8903的产物组成及胞外蛋白的酶活性具有明显差异。 [Objective] This study is aimed to characterize fermentation and enzyme characteristics of an extremely thermophilic anaerobic lignocellulolytic bacterium Caldicellulosiruptor saccharolyticus F32. [Methods] Cell growth was monitored by cell counting. Acetate, lactate and residual reducing sugars were measured by using an ion chromatography system. H2 was detected by gas chromatography. DNS method and p-nitrophenyl method were used to measure the enzyme activities of the secreted proteins of C. saccharolyticus F32 and DSM 8903. [Results] In contrast to C. saccharolyticus DSM 8903, strain F32 grew better on cellulose (Avicel PH-101), even on unpretreated wheat straw. Compared to C. saccharolyticus DSM 8903, strain F32 produced more lactate as the end product, thereby decreasing the hydrogen yield when glucose was used as carbon source. The secretome of strain F32 showed higher endoglucanase and xylanase activities. [Conclusion] In comparison with C. saccharolyticus DSM 8903, C. saccharolyticus F32 could degrade lignocellulosic biomass more efficiently. There were significant difference in the products, cellulase and hemicellulase systems between C. saccharolyticus F32 and C. saccharolyticus DSM 8903.
出处 《微生物学通报》 CAS CSCD 北大核心 2014年第2期211-217,共7页 Microbiology China
基金 国家973计划项目(No.2011CB707404)
关键词 木质纤维素 纤维素酶 解糖热解纤维素菌 未预处理秸秆 Lignocellulosic biomass, Cellulase, Caldicellulosiruptor saccharolyticus, Unpretreatedwheat straw
  • 相关文献

参考文献17

  • 1Agency USEP. Biomass conversion: emerging technologies, feedstocks, and products[R]. 2007, EPA/600/R-607/144, U.S. Environmental ProtectionAgency, Washington, DC. 被引量:1
  • 2Yang B, Dai ZY, Ding SY, et al. Enzymatic hydrolysis of cellulosic biomass[J]. Biofuels, 2011, 2(4): 421-450. 被引量:1
  • 3孙君社,苏东海,刘莉.秸秆生产乙醇预处理关键技术[J].化学进展,2007,19(7):1122-1128. 被引量:26
  • 4Lynd LR, Weimer P J, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbial Cellulose Utilization, 2002, 66(3): 506-577. 被引量:1
  • 5Maki M, Leung KT, Qin WS. The prospects of cellulase-producing bacteria for the bioconversion of ligncellulosic biomass[J]. International Journal of Biological Sciences, 2009, 5(5): 500-516. 被引量:1
  • 6Morag E, Halevy I, Bayer EA, et al. Isolation andproperties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum[J]. Journal of Bacteriology, 1991, 173(13): 4155-4162. 被引量:1
  • 7Lorena AD, Teresa MC, Alejandro SH, et al. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (CflxynllA) from Cellulomonas flavigena[J]. Bioresource Technology, 2010, 101: 5539-5545. 被引量:1
  • 8Warner CD, Hoy JA, Shilling C, et al. Tertiary structure and characterization of a glycoside hydrolase family 44 endoglucanase from Clostridium acetobutylicum[J]. Applied and Environmental Microbiology, 2010, 76(1): 338-346. 被引量:1
  • 9Blumer-Schuette SE, Ozdemir I, Mistry D, et al. Complete genome sequences for the anaerobic, extremely therrnophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristj'anssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus[J]. Journal of Bacteriology, 2011, 193(6): 1483-1484. 被引量:1
  • 10De Vrije T, Bakker RR, Budde MA, et al. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana[J]. Biotechnology for Biofuels, 2009, 2(1): 12-37. 被引量:1

二级参考文献63

  • 1Schell D,Nguyen Q,Tucker M,et al.Appl.Biochem.Biotechnol.,1998,70:17-24 被引量:1
  • 2Wong K K Y,Deverell K F,Mackie K L,et al.Biotechnol.Bioeng.,1988,31:447-456 被引量:1
  • 3Tatsumoto K,Baker J O,Tucker M P,et al.Appl.Biochem.Biotechnol.,1988,18:159-174 被引量:1
  • 4Palonen H,Tjerneld F,Zacchi G,et al.J.Biotechnology,2003,107:65-72 被引量:1
  • 5Shevchenko S M,Beatson R P,Saddler J N.Appl.Biochem.Biotechnol.,1999,77:867-876 被引量:1
  • 6Van Walsum G P,Allen S G,Spencer M J,et al.Appl.Biochem.Biotechnol.,1996,54/55:157-170 被引量:1
  • 7Sivers M V,Zacchi G.Bioresour.Technol.,1995,51:43-52 被引量:1
  • 8Hinman N D,Schell D J,Riley C J,et al.Appl.Biochem.Biotechnol.,1992,34/35:639-649 被引量:1
  • 9Brennan A H,Hoagland W,Schell D J.Biotechnol.Bioeng.Symp.,1986,17:53-70 被引量:1
  • 10Converse A O,Kwarteng I K,Grethlein H E,et al.Appl.Biochem.Biotechnol.,1989,20/21:63-78 被引量:1

共引文献25

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部