期刊文献+

空间极大co-location模式挖掘研究 被引量:5

Mining Spatial Maximal Co-Location Patterns
下载PDF
导出
摘要 空间co-location模式代表了一组空间特征的子集,它们的实例在空间中频繁地关联。挖掘空间co-location模式的研究已经有很多,但是针对极大co-location模式挖掘的研究非常少。提出了一种新颖的空间极大co-location模式挖掘算法。首先扫描数据集得到二阶频繁模式,然后将二阶频繁模式转换为图,再通过极大团算法求解得到空间特征极大团,最后使用二阶频繁模式的表实例验证极大团得到空间极大co-location频繁模式。实验表明,该算法能够很好地挖掘空间极大co-location频繁模式。 A spatial co-location pattern is a group of spatial features whose instances are frequently located in the same region. The mining spatial co-location pattern problem had been investigated in the past, but a little for mining spatial maximal co-location patterns. This paper proposes a novel algorithm for mining spatial maximal co-location patterns. Firstly, the size2 co-location frequent patterns are generated based on the data sets, and then the size2 co-location frequent patterns are converted into a graph. Secondly, the maximal cliques in the graph are found through a maximal clique algorithm. Finally, spatial maximal co-location frequent patterns are obtained by verifying the maximal cliques based on table instances of size2 frequent patterns. The extensive experiments demonstrate that this algorithm is effective and efficient in mining spatial maximal co-location frequent patterns.
出处 《计算机科学与探索》 CSCD 2014年第2期150-160,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 Grant Nos.61063008 61272126 61262069~~
关键词 空间数据挖掘 空间极大co-location模式挖掘 极大团 spatial data mining spatial maximal co-location pattern mining maximal clique
  • 相关文献

参考文献14

  • 1Xiong Hui, Shekhar S, Huang Yan, et al. A framework for discovering co-location patterns in data sets with extended spatial objects[C]//Proceedings of the 12th Annual ACM International Conference on Data Mining (SDM '04), Lake Buena Vista, USA, Apr 2004. New York, NY, USA: ACM, 2004: 1-12. 被引量:1
  • 2Wang Lizhen, Bao Yuzhen, Lu J, et al. A new join-less approach for co-location pattern mining[C]//Proceedings of the 8th IEEE International Conference on Computer and Information Technology (CIT '08), Sydney, Australia, 2008. Piscataway, NJ, USA: IEEE, 2008: 197-202. 被引量:1
  • 3Yoo J S, Shekhar S, Smith J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Infor- mation Systems (GIS '04), Washington, USA, 2004. New York, NY, USA: ACM, 2004: 241-249. 被引量:1
  • 4Huang Yan, Zhang Pusheng. On the relationships between clustering and spatial co-location pattem mining[C]//Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '06), Arlington, USA, Nov 2006. Washington, DC, USA: IEEE Computer Society, 2006: 513-522. 被引量:1
  • 5Xiao Xiangye, Xie Xing, Luo Qiong, et al. Density based co-location pattern discovery[C]//Proceedings of the 16th ACM SIGSPATIAL Intemational Conference on Advances in Geographic Information Systems (GIS '08), Irvine, USA, 2008. New York, NY, USA: ACM, 2008: 29-38. 被引量:1
  • 6Huang Yan, Shekhar S, Xiong Hui. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16 (12): 1472-1485. 被引量:1
  • 7Huang Yan, Pei Jian, Xiong Hui. Mining co-location patterns with rare events from spatial data sets[J]. GeoInformatica, 2006, 10(3): 239-260. 被引量:1
  • 8Wang Lizhen, Ban Yuzhen, Lu Zhongyu. Efficient discov- ery of spatial co-location patterns using the iCPI-tree[J]. The Open Information Systems Journal, 2009, 3(2): 69-80. 被引量:1
  • 9Yoo J S, Shekhar S, Celik M. A join-less approach for co- location pattern mining: a summary of results[C]//Proceedings of the 5th IEEE International Conference on Data Mining(ICDM '05), Houston, USA, 2005. Washington, DC, USA: IEEE Computer Society, 2005: 813-816. 被引量:1
  • 10Celik M, Kang J M, Shekhar S. Zonal co-location pattern discovery with dynamic parameters[C]//Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07), Istanbul, Turkey, Apr 2007. Washington, DC, USA: IEEE Computer Society, 2007: 433-438. 被引量:1

二级参考文献14

  • 1王丽爱,周旭东,陈崚.最大团问题研究进展及算法测试标准[J].计算机应用研究,2007,24(7):69-70. 被引量:13
  • 2Chen Ping, Liu Zhen, Qiao Xiuquan, et al. The parallel algo- rithm of clique and its application on data mining grid sys- tem[C]//Proceedings of the 2009 IEEE International Confer- ence on Network Infrastructure and Digital Content (NIDC 2009), Beijing, 2009. Washington, DC, USA: IEEE Com- puter Society, 2009: 340-343. 被引量:1
  • 3Jiao Qingju, Shen Hongbin. Maximum-clique algorithm: an effective method to mine large-scale co-expressed genes in arabidopsis anther[C]//Proceedings of the 30th Chinese Control Conference (CCC 2011), Yantai, China, 2011: 5650-5655. 被引量:1
  • 4Balaji S, Swaminathan V. A simple algorithm for maximum clique and matching protein structures[J]. International Jour- nal of Combinatorial Optimization Problems and Informatics, 2010, 1(2): 2-11. 被引量:1
  • 5Katayama K, Hamamoto A, Narihisa H. Solving the maximum clique problem by k-opt local search[C]//Proceedings of the 2004 ACM Symposium on Applied Computing (SAC '04), Nicosia, Cyprus, 2004. Now York, NY, USA: ACM, 2004: 1021-1025. 被引量:1
  • 6Regin J. Using constraint programming to solve the maximum clique problem[C]//LNCS 2833: Proceedings of the 9th Inter- national Conference on Principles and Practice of Constraint Programming (CP 2003), Kinsale, Ireland, 2003. Berlin, Heidelberg: Springer-Verlag, 2003: 634-648. 被引量:1
  • 7Taillon P J. A new approach for solving the maximum clique problem[C]//LNCS 4041: Proceedings of the 2nd lnternational Conference on Algorithmic Aspects in Information and Management (AAIM 2006), Hong Kong, China, 2006. Ber- lin, Heidelberg: Springer-Verlag, 2006: 279-290. 被引量:1
  • 8Gendron B, Hertz A, St-Louis P. A sequential elimination algorithm for computing bounds on the clique number of a graph[J]. Discrete Optimization, 2008, 5(3): 615-628. 被引量:1
  • 9Martins E Cliques with maximum/minimum edge neighbor- hood and neighborhood density[J]. Computers and Operations Research, 2012, 39(3): 594-608. 被引量:1
  • 10Tomita E, Kameda T. An efficient branch-and-bound algorithm for finding a maximum clique with computational experi- ments[J]. Journal of Global Optimization, 2009, 44(2): 311-327. 被引量:1

共引文献6

同被引文献42

  • 1胡彩平,秦小麟.一种新的正负空间同位规则挖掘算法[J].小型微型计算机系统,2008,29(1):80-84. 被引量:4
  • 2Agrawal R,Imielinske T,Swami A.Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data . 1993 被引量:5
  • 3Srikant R,Agrawal R.Mining generalized association rules. Proceedings of the 21st International Conference on Very Large Database . 1995 被引量:1
  • 4Avi Siberschatz,Alexander Tuzhilin.What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering . 1996 被引量:1
  • 5Yoo, Jin Soung,Shekhar, Shashi.A joinless approach for mining spatial colocation patterns. IEEE Transactions on Knowledge and Data Engineering . 2006 被引量:1
  • 6Mohammed J Zaki,Mitsunori Ogihara.Theoretical Foundations of Association Rules. 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery . 1998 被引量:1
  • 7Ana Cristina Bicharra Garcia,Inhauma Ferraz,Adriana S. Vivacqua.??From data to knowledge mining(J)Artificial Intelligence for Engineering Design, A . 2009 (4) 被引量:1
  • 8Lizhen Wang,Lihua Zhou,Joan Lu,Jim Yip.??An order-clique-based approach for mining maximal co-locations(J)Information Sciences . 2009 (19) 被引量:1
  • 9Li,Jiuyong.On optimal rule discovery. IEEE Transactions on Knowledge and Data Engineering . 2006 被引量:1
  • 10Marinica, Claudia,Guillet, Fabrice.Knowledge-based interactive postmining of association rules using ontologies. IEEE Transactions on Knowledge and Data Engineering . 2010 被引量:1

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部