期刊文献+

航空用风冷活塞式发动机热状态研究 被引量:4

Research on Thermal State of Air-Cooled Piston Engine for Aviation
下载PDF
导出
摘要 建立了冷却系统传热模型和边界条件计算模型。以缸内燃气压力和温度试验数据为基础,利用经验公式计算了气缸体内壁与燃气、外部与冷却空气间的传热边界条件。以气缸体温度场计算为切入点对发动机热状态进行研究,计算并分析了不同飞行高度下气缸体的温度分布;研究了螺旋桨转速对气缸体温度的影响;同时还计算了最大功率工况下保持热状态稳定需要的螺旋桨转速;试验测取了不同高度时的气缸体特征点温度。计算和试验结果表明:在最大功率工况下,螺旋桨转速不变时,随着飞行高度的增加发动机热状态逐渐升高;同一飞行高度下,螺旋桨转速越高,发动机热状态越低;调节螺旋桨转速能够使气缸体温度稳定在某一范围内;试验与仿真结果的误差小于5%,满足工程需要。 Cooling system heat transfer model and boundary condition computation model were founded to calculate engine thermal state. Based on the measured experimentally gas pressure and temperature, the heat transfer boundary conditions between cylinder wall and high-temperature gas, cylinder external surface and cooling air were calculated by using empirical formula. Taking cylinder temperature field calculation as the entry point, cylinder block temperature distributions at different flying heights were simulated and analyzed the effect of propeller speed on cylinder block temperature was researched the propeller speed required to keep the steady thermal state in max. power condition was computed, and the temperatures of cylinder block feature points were measured at different heights. Calculation and test results show that in max. power condition,engine thermal state enhances gradually with flying height rising while propeller speed is constant the higher the propeller speed is, the lower the engine thermal state will be at the same flying height. The cylinder block temperature can be maintained in a certain range by adjusting propeller speed. The error between calculation and test results is less than 5 %,satisfying the engineering need.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2014年第1期35-40,共6页 Chinese Internal Combustion Engine Engineering
基金 装备部预研项目(40109/02010101)
关键词 内燃机 航空 风冷活塞式发动机 冷却系统 传热模型 热状态 IC engine aviation air-cooled piston engine cooling system heat transfer model thermal state
  • 相关文献

参考文献9

二级参考文献16

  • 1严兆大,胡章其,沈宏泉,俞小莉,沈瑜铭,张红生.小功率风冷柴油机的技术现状[J].内燃机工程,1994,15(2):25-33. 被引量:1
  • 2郑飞.风冷内燃机[M].浙江:浙江大学出版社,1985.. 被引量:5
  • 3熊树生,周文华,张朝山,何文华,陈理,程超.发动机缸体冷却液流动传热的三维CFD模拟[J].浙江大学学报(工学版),2007,41(7):1191-1194. 被引量:6
  • 4[1]Letlow J T,Jewkins L C .Development of an integrated environmental control system.SAE981544,1998. 被引量:1
  • 5[3]Lui C W,Lee C K,Schwan E.Integrated environmental control system and liquid cooling system for F/A-18E/F.SAE951400,1995. 被引量:1
  • 6Woschni G.A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine[C]//SAE 670931,1967. 被引量:1
  • 7Chen S K,Flynn P F.Development of a single cylinder compression ignition research engine[C]//SAE 650733,1965. 被引量:1
  • 8帕坦卡 S V.传热和流体流动的数值方法[M].郭宽良,译.1版.合肥:安徽科学技术出版社,1984. 被引量:1
  • 9Kays W,Crawford M,Weigand B.对流传热与传质[M].赵镇南,译.4版.北京:高等教育出版社,2007. 被引量:3
  • 10Zou X,Jordan J A,Shillor M.A dynamic model for a thermostat[J].Journal of Engineering Mathematics,1999,36(4):291-310. 被引量:1

共引文献74

同被引文献31

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部