期刊文献+

基于地基天文望远镜的偏振成像光谱仪光学系统设计 被引量:1

Optical System Design of Polarization Imaging Spectrometer for Ground-Based Astronomical Observation
原文传递
导出
摘要 天体物理学的发展对实测天文的要求越来越高,天文光谱偏振观测能够获得更多的天体信息,可为进一步的研究提供全面的资料。以中国科学院国家天文台的2.16 m地基式天文望远镜为平台,设计并研制了基于声光可调谐滤波器的偏振成像光谱仪,光谱范围为450~900 nm,光谱通道数为128个。以声光可调谐滤波器(AOTF)为分光元件,光谱通道可电调谐,可以同时获得图像光谱偏振信息。该设备由望远镜准直系统、声光可调谐滤波器、望远镜成像系统,补偿准直系统,补偿成像系统及探测器组件组成。介绍了声光可调谐滤波器的偏振成像光谱仪的工作原理、设计方案及各光学子系统的设计参数分配,最终完成了一个设计质量在32 lp/mm 的空间频率下, 调制传递函数(MTF)均值为0.5的光学系统。 With the development of astrophysics, the astrophysics demands are higher and higher. Astronomical spectral polarization observation can obtain more object information, to provide comprehensive data for further research. On the basis of the 2.16 m astronomical telescope, a polarization imaging spectrometer based on acousto-optic tunable filter is designed, with spectral range of 450~900 nm and the number of spectral channels of 128. As a kind of light splitted element, the acousto-optic tunable filter (AOTF) can obtain image spectral polarization information at the same time. The polarization imaging spectrometer consists of telescope system, acousto-optic imaging system tuned filter, telescope collimation system, compensation, compensation of imaging system and detector, etc. The work principle of AOTF is introduced. Then, design parameters of each optical subsystem are discussed. Finally, the results of optical design are presented. The whole system is achromatized from 0.45 to 0.9 μm with modulated transfer function (MTF) reaching 0.5 under imaging resolution of 32 lp/mm.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第B12期173-177,共5页 Acta Optica Sinica
基金 国家自然科学基金天文联合基金(10978005)、陕西省自然科学基金基础研究计划(2012JQ8014)、陕西省教育厅专项科研计划项目(12JK0978)
关键词 光学设计 地基天文望远镜 成像光谱仪 声光可调谐滤波器 optical design ground-based telescope imaging spectrometer acousto-optic tunable filter
  • 相关文献

参考文献15

  • 1D A Glenar, J J Hillman, B N Sail, et al.. POLARIS-II: an acousto-optic imaging spectropolarimeter for ground-based astronomy [C]. San Diego: International Society for Optics and Photonics, 1992. 92--101. 被引量:1
  • 2David A Glenar. Acousto-optic imaging spectropolarimetry for remote sensing[J]. Appl Opt, 1994, 33(31): 7412 7424. 被引量:1
  • 3P D Strycker, N J Chanover, D G Voelz, et al.. Hyperspectral imaging of jupiter and saturn [C]. Planetary Atmospheres, 2007, 1: 120--121. 被引量:1
  • 4V M Molchanov, V M Lyuty, V F Esipov, et al.. An acousto- optical imaging spectrophotometer for astrophysical observations[J]. Astronomy Letters, 2002, 28(10): 713--720. 被引量:1
  • 5J F Harrison, W E Roper, R B Gomez. Earth-observing hyperspectral imaging systems: a 2003 survey [C]. SHE, 2003, 5097:222 -232. 被引量:1
  • 6F John, Wayne C Welch. Survey and analysis of fore-optics for hyperspectral imaging systems [C]. SHE, 2006, 6206: 62062R. 被引量:1
  • 7R G Sellar, G D Boreman. Classification of imaging spectrometers for remote sensing applications [J]. Opt Eng, 2005, 44(1): 013602. 被引量:1
  • 8J S Tyo, D L Goldstein, D B Chenault, et al.. Review of passive imaging polarimetry for remote sensing applications [J]. Appl Opt, 2006, 45(22): 5453--5469. 被引量:1
  • 9E L Dereniak, N A Hagen, W R Johnson, et al.. Imaging spectropolarimetry [C]. SHE, 2006, 5074:272-285. 被引量:1
  • 10Calpe-Maravilla, Javier. 400 - 1000 nm imaging spectrometer based on acousto optic tunable filters [C]. SPIE, 2004, 5570: 460--471. 被引量:1

二级参考文献65

共引文献46

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部