期刊文献+

结构可靠性分析的变量分解法 被引量:4

Dimension-Reduction Method for Structural Reliability Analysis
下载PDF
导出
摘要 针对隐式非线性极限状态的复杂结构可靠性预测,提出了一种变量分解方法.该方法利用双变量分解法将求解功能函数统计矩的多维积分转化为多个低维积分,并利用高斯-埃尔米特数值积分对低维积分进行求积.在获得功能函数的统计矩后,应用最大熵原理确定用于可靠性分析的功能函数的最佳概率密度函数.该方法只需进行一次结构功能函数的概率密度函数求解,就能获得不同极限状态值的可靠度.算例分析结果表明,该方法的结果与Monte Carlo法100万次模拟结果相比,其相对误差不超过0.5%,具有很好的计算精度. To predict the reliability of implicit and nonliear performance function for complex structures, a dimension-reduction method was presented. The multi-dimensional integration applied to calculate statistical moments of performance function is transformed into multiple low dimensional integrations using the bivariate dimension-reduction method, and the low dimensional integrations are then numerically calculated by the Gauss-Hermite integration. After obtaining the statistical moments, the maximum entropy principle (MEP) is used to determine the best probability density function of performance function for reliability analysis. The proposed method has the merit that the reliabilities at different limit-state values can be obtained readily by determining the probability density function of performance function simultaneously. The results of two examples show that the relative error of failure probability obtained by the proposed method is less than 0. 5% compared with that derived by one million times simulations of the Monte Carlo method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2014年第1期79-85,共7页 Journal of Southwest Jiaotong University
基金 中央高校基本科研业务费专项资金资助项目(CHD2009JC152 2013G3254015)
关键词 结构可靠性 双变量分解法 最大熵原理 概率密度函数 structural reliability bivariate dimension-reduction method maximum entropy principle probability density function
  • 相关文献

参考文献18

  • 1李伦贵,高波.翼墙式隧道洞门可靠性分析[J].西南交通大学学报,2002,37(5):496-499. 被引量:10
  • 2戴鸿哲,王伟.结构可靠性分析的拟蒙特卡罗方法[J].航空学报,2009,30(4):666-671. 被引量:11
  • 3ENGELUND S,RACKWITZ R. A benchmark study on importance sampling techniques in structural reliability[J].Structural Safety,1993,(4):255-276. 被引量:1
  • 4NIE J,ELLINGWOOD B R. Directional methods for structural reliability analysis[J].Structural Safety,2000,(3):233-249. 被引量:1
  • 5NIE J,ELLINGWOOD B R. A new directional simulation method for system reliability.Part Ⅰ:application of deterministic point sets[J].PROBABILISTIC ENGINEERING MECHANICS,2004,(4):425-436. 被引量:1
  • 6NIEDERREITER H,SPANIER J. Monte Carlo and quasi-Monte Carlo methods[M].Berlin:Springer-Verlag,2000.44-45. 被引量:1
  • 7KIM S H,NA S W. Response surface method using vector projected sampling points[J].Structural Safety,1997,(1):3-19. 被引量:1
  • 8GUAN X L,MELCHERS R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,(4):429-444. 被引量:1
  • 9NAM M D,THANH T C. Approximation of function and its derivatives using radial basis function networks[J].Applied Mathematical Modeling,2003,(3):197-220. 被引量:1
  • 10GOMES H M,AWRUCH A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,(1):49-67. 被引量:1

二级参考文献65

共引文献61

同被引文献24

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部