期刊文献+

自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计 被引量:19

State of charge estimation of lithium iron phosphate batteries based on adaptive Kalman filters
下载PDF
导出
摘要 卡尔曼滤波法在估计动力电池的剩余容量(SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,笔者采用自适应卡尔曼滤波法来动态地估计电动汽车用磷酸铁锂动力电池的SOC。首先对电池模型进行了研究,建立了适用于SOC估计的电池模型,然后设计了相应的电池充放电实验检测到模型的参数,并进行了验证,最后将自适应卡尔曼滤波法应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC。仿真结果表明:自适应卡尔曼滤波法能够实时修正微小的模型误差带来的SOC估计误差,估计精度高于卡尔曼滤波法,且自适应卡尔曼滤波法对初值误差具有修正作用。实车循环行驶实验表明算法适用于磷酸铁锂动力电池的SOC估计。 The Kalman filter algorithm can be used to estimate the state of charge (SOC) of power batteries, however, it easily causes divergence due to uncertain of system noise and its estimation performance is affected by model. An adaptive Katman filter algorithm is adopted to dynamically estimate SOC of lithium iron phosphate batteries for application in electric vehicles. At first, an equivalent circuit model, appropriate for SOC estimation is built after studying battery models. Then some charging and discharging experiments are carried out for parameter identification and the results are verified. At last, the adaptive Kalman filter algorithm is used on this model for on line SOC estimation under unknown interfering noise. Simulation results show that adaptive Kalman filter method can correct SOC estimation error caused by tiny model error online, and the estimate accuracy is higher than Kalman filter method. Adaptive Kalman filter algorithm can also correct the initial error. Full-cycle test in electric vehicles proves that the algorithm is appropriate for SOC estimation of lithium iron phosphate battery.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期68-74,共7页 Journal of Chongqing University
基金 中央高校基本科研业务费资助项目(CDJXS11151156)
关键词 磷酸铁锂动力电池 剩余容量 状.态估计 自适应 卡尔曼滤波 lithium iron phosphate battery state of charge state estimation adaptive Kalman filters
  • 相关文献

参考文献18

  • 1桂长清等编著..实用蓄电池手册[M].北京:机械工业出版社,2011:416.
  • 2l.iu Y H, Luo Y F. Search for an optimal rapid charging pattern for Li-Ion Batteries using the taguchi approach[ J ]. Industrial Electronics, IEEE Transactions on Industrial Electronics, 2010,57 (12) : 3963- 3971. 被引量:1
  • 3Lee D T, Shiah S J, Lee C M, et al. State-of-Charge estimation for electric scooters by using learning mechanisms [ J]. Vehicular Technology IEEEE transactions on Vehicular Technology, 2007,56 ( 2 ) : 544-556. 被引量:1
  • 4胡明辉,秦大同,舒红,蒲斌.混合动力汽车电池管理系统SOC的评价[J].重庆大学学报(自然科学版),2003,26(4):20-23. 被引量:47
  • 5田光宇,彭涛,林成涛,陈全世.混合动力电动汽车关键技术[J].汽车技术,2002(1):8-11. 被引量:43
  • 6Malkhandi S. Fuzzy logic-based learning system and estimation of state of charge of lead-acid battery[J]. Engineering Applications of Artificial Intelligence, 2006, 19(5): 479- 485. 被引量:1
  • 7Piao C H, Fu W L, Wang J, et al. Estimation of the state of charge of Ni-MH battery pack based on artificial neural network[C]//Proceedings of the 31th International Telecommunications Energy Conference, October 18-22, 2009, Incheon. Piscataway: IEEE Press, 2009 : 1-4. 被引量:1
  • 8刘浩..基于EKF的电动汽车用锂离子电池SOC估算方法研究[D].北京交通大学,2010:
  • 9Plett G L. Extended Kalman filtering for battery management dystems of Lipb-Based HEV battery packs: part 3. State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2) : 277-292. 被引量:1
  • 10杨飞..磷酸铁锂动力电池管理系统的研究[D].重庆大学,2010:

二级参考文献44

共引文献225

同被引文献141

引证文献19

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部