摘要
M-矩阵是一类有重要应用背景的特殊矩阵,生物学、物理学和社会科学等学科中的许多问题都与M-矩阵有密切的联系.M-矩阵与其逆矩阵的Hadamard积的最小特征值的估计是M-矩阵理论及其应用中重要的问题之一,一直受到专家学者广泛的关注和研究.给出了M-矩阵与其逆矩阵的Hadamard积的最小特征值的2个新的估计式,并从理论上证明了新的估计式比现有的一些估计式更精确,算例也表明所得的估计式的确比现有估计式的估计结果更为精确.另外,这些估计式只用到矩阵的元素,因而计算简单易行.
The M-matrices are a class of important special matrices which have extensive application background.Many problems in biology,physics and social science have close connection with M-matrices.Estimations of the minimum eigenvalue of the Hadamard product of M-matrix and its inverse play an important role in the matrix theory and its application,which have been extensively studied by researchers in recent years.In this paper,we get two new estimate formulas of the lower bound on the minimum eigenvalue of the Hadamard product of M-matrix and its inverse.At the same tine,it is proved that the new estimate formulas improve several present results ; numerical examples show that the results of this paper are more accurate in some cases.In addition,these formulas depend only on the elements of matrix A,therefore they are easy to compute.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第1期90-97,共8页
Journal of Sichuan Normal University(Natural Science)
基金
云南省教育厅自然科学基金(2012Y270)资助项目