期刊文献+

M-矩阵与其逆的Hadamard积的最小特征值下界新的估计式 被引量:13

New Estimation Formulas on Lower Bound for the Minimum Eigenvalue of Hadamard Product of M-matrix and Its Inverse
下载PDF
导出
摘要 M-矩阵是一类有重要应用背景的特殊矩阵,生物学、物理学和社会科学等学科中的许多问题都与M-矩阵有密切的联系.M-矩阵与其逆矩阵的Hadamard积的最小特征值的估计是M-矩阵理论及其应用中重要的问题之一,一直受到专家学者广泛的关注和研究.给出了M-矩阵与其逆矩阵的Hadamard积的最小特征值的2个新的估计式,并从理论上证明了新的估计式比现有的一些估计式更精确,算例也表明所得的估计式的确比现有估计式的估计结果更为精确.另外,这些估计式只用到矩阵的元素,因而计算简单易行. The M-matrices are a class of important special matrices which have extensive application background.Many problems in biology,physics and social science have close connection with M-matrices.Estimations of the minimum eigenvalue of the Hadamard product of M-matrix and its inverse play an important role in the matrix theory and its application,which have been extensively studied by researchers in recent years.In this paper,we get two new estimate formulas of the lower bound on the minimum eigenvalue of the Hadamard product of M-matrix and its inverse.At the same tine,it is proved that the new estimate formulas improve several present results ; numerical examples show that the results of this paper are more accurate in some cases.In addition,these formulas depend only on the elements of matrix A,therefore they are easy to compute.
作者 高美平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期90-97,共8页 Journal of Sichuan Normal University(Natural Science)
基金 云南省教育厅自然科学基金(2012Y270)资助项目
关键词 M-矩阵 HADAMARD积 特征值 下界 M-matrix Hadamard product eigenvalue lower bounds
  • 相关文献

参考文献6

二级参考文献45

  • 1周平,赵慧.M-矩阵与M-矩阵的逆的Hadamard积的最小特征值下界的估计[J].四川理工学院学报(自然科学版),2011,24(6):729-732. 被引量:1
  • 2HORN R,JOHNSON C R.Topics in matrix analysis[M].New York:Cambridge University Press,1991:1. 被引量:1
  • 3FIEDLER M,JOHNSON C R,MARKHAM T.A trace inequality for M-matrices and the symmetriz-ability of a real matrix bu a positive diagonal matri[J].Linear Algebra Appl,1985(71):81-94. 被引量:1
  • 4JOHNSON C R,A Hadamard product involving M-matrices[J].Lineat and Multilinear Algebra,1997(4):261-264. 被引量:1
  • 5FIEDLER M,MARKHAM T L.An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J].Linear Algebra Appl,1998(101):1-8. 被引量:1
  • 6YONG X R,Proof of a conjecture of Fiedler and Markham[J].Linear Algebra Appl,2000(320):167-171. 被引量:1
  • 7SONG Y Z.On an inequality for the Hadamard product of an M-matrix and its inverse[J].Linear Algebra Appl,2000(305):99-105. 被引量:1
  • 8CHEN S C.A lower bound for the minimum eigenvalue of the Hadamard product of matrices[J].Linear Algebra Appl,2004(378):159-166. 被引量:1
  • 9LI H B,HUANG T Z,SHEN S Q,et al.Lower bounds for the eigenvalue of Hadamard product of an M-matrix and its inverse[J].Linear Algebra Appl,2007(420):235-247. 被引量:1
  • 10Fiedler M,Markham T.An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J] .Linear Algebra Appl,1988,101:1-8. 被引量:1

共引文献13

同被引文献73

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部