期刊文献+

耗散SLRW方程的一个新的守恒差分逼近 被引量:2

A New Conservative Finite Difference Approximate Solution for Dissipative Symmetric Regularized Long Wave Equation
下载PDF
导出
摘要 利用Lax格式的离散思想,引入加权系数,对耗散对称正则长波方程的初边值问题提出了一个带有加权系数a的3层线性差分格式,格式合理地模拟了问题的2个守恒律,得到了差分解的先验估计,分析了该格式的二阶收敛性与稳定性.数值实验表明,该方法是可信的,且适当调整加权系数,可以大幅提高计算精度. In this paper, a finite difference method for an initial-boundary value problem of dissipation symmetric regularized long- wave equation is considered. An energy conservative three-level finite difference with weight coefficient a is proposed by Lax scheme. The scheme simulates two conservation properties of the problem well. Error estimates based on energy methods are derived. It is shown that the finite difference scheme's of second-order convergence and unconditionally stable. Numerical examples confirm the theoreticalresults.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期49-53,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅青年基金(11ZB009)资助项目
关键词 耗散对称正则长波方程 差分格式 守恒 收敛性 稳定性 dissipative symmetric regularized long wave equation difference method conservative convergence stability.
  • 相关文献

参考文献8

二级参考文献35

共引文献62

同被引文献16

  • 1Rosenau P. A quasi - continuous description of a nonlinear transmission line[ J]. Physica Scripta, 1986,34:827 - 829. 被引量:1
  • 2Rosenau P. Dynamics of dense discrete systems [ J]. Progress of Theoretical Physics, 1988,79 : 1028 - 1042. 被引量:1
  • 3Park M A. On the Rosenau equation [ J ]. Applied Mathematics and Computation, 1990,9 (2) : 145 - 152. 被引量:1
  • 4Omrani K, Abidi F, Achouri T, et al. A new conservative finite difference scheme for the Rosenau equation [ J ]. Appl Math Comput, 2008,201 ( 1/2 ) : 35 - 43. 被引量:1
  • 5Chung S K. Finite difference approximate solutions for the Rosenau equation[ J]. Appl Anal,1998,69(1/2) :149 -156. 被引量:1
  • 6Chung S K, Pani A K. Numerical methods for the Rosenau equation[ J]. Appl Anal,2001,77 (3/4) :351 - 369. 被引量:1
  • 7Kim Y D, Lee H Y. The convergence of finite element Galeerkin solution for the Rosenau equation [ J ]. Korean J Comput Appl Math, 1998,5 ( 1 ) : 171 - 180. 被引量:1
  • 8Zuo J M. Solitons and periodic solutions for the Rosenau - KdV and Rosenau - Kawahara equations [ J ]. Appl Math Comput, 2009,215 ( 2 ) : 835 - 840. 被引量:1
  • 9Biswas A, Triki H, Labidi M. Bright and dark solitons of the Rosenau - Kawahara equation with power law nonlinearity [ J ]. Physics of Wave Phenomena,2011,19 ( 1 ) :24 - 29. 被引量:1
  • 10Hu J, Xu Y C, Hu B, et al. Two conservative difference schemes for Rosenau -Kawahara equation[ J]. Adv Math Phys,2014, 10(1) :396 -409. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部