摘要
利用Lax格式的离散思想,引入加权系数,对耗散对称正则长波方程的初边值问题提出了一个带有加权系数a的3层线性差分格式,格式合理地模拟了问题的2个守恒律,得到了差分解的先验估计,分析了该格式的二阶收敛性与稳定性.数值实验表明,该方法是可信的,且适当调整加权系数,可以大幅提高计算精度.
In this paper, a finite difference method for an initial-boundary value problem of dissipation symmetric regularized long- wave equation is considered. An energy conservative three-level finite difference with weight coefficient a is proposed by Lax scheme. The scheme simulates two conservation properties of the problem well. Error estimates based on energy methods are derived. It is shown that the finite difference scheme's of second-order convergence and unconditionally stable. Numerical examples confirm the theoreticalresults.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第1期49-53,共5页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅青年基金(11ZB009)资助项目
关键词
耗散对称正则长波方程
差分格式
守恒
收敛性
稳定性
dissipative
symmetric regularized long wave equation
difference method
conservative
convergence
stability.