期刊文献+

基于局部多项式傅里叶变换的语音盲源分离 被引量:2

Speech Signal Blind Separation Based on Local Polynomial Fourier Transform
下载PDF
导出
摘要 频域的语音信号盲源分离多采用短时傅里叶变换以及Wigner-Ville分布(WVD)求信号的功率谱,而短时傅里叶变换对于多分量信号的频率分辨率受窗函数影响很大,WVD是一种非线性时频变换,处理多分量信号受交叉项影响很大。局部多项式傅里叶变换(LPFT)不仅提高了频率估计精度而且大大减少了时频分布中交叉项的影响。将语音信号表示为多分量的多项式相位信号,对语音信号作二阶LPFT,求得其局部多项式傅里叶变换谱(LPP),并构造时频矩阵,采用联合近似对角化算法求得能使信号功率谱矩阵近似对角化的一个酉矩阵,通过信号的白化以及酉矩阵来估计源信号,有效地分离出了原始信号。仿真结果表明,在噪声环境下可以将两个不同的语音信号进行分离。 The speech signal blind source separation in frequency domain uses short-time Fourier transformation (STF'F) and Wigner-Ville distribution (WVD)for signal power spectrum. For the multi component signal short-time Fourier transform frequency resolution is affected by window function. WVD is a non-linear time-frequency transform, in the processing of the multi-component signal is highly affected by the cross terms. Local Polynomial Fourier Transform (LPF'F) has been used in many signal processing field as a generalized form of STFI'. The precision of frequency estimation is improved and the influ- ence of cross terms in the time-frequency distribution is reduced. The speech signal is expressed by the multi-component pol- ynomial phase signal in this paper, and makes the second-order LPF'F. Its local polynomial Fourier conversion spectrum (LPP) is obtained and the time-frequency matrix is coonstructed. Finally the joint approximate diagonalization algorithm is used to obtain the enabling signal' s power frequency spectrum matrix that approximate diagonalization unitary matrix. The source signal through the signal albinism as well is estimated as unitary matrix, it can separate the primary signal effectively. The results show that the different speech signals can be successfully separated in the noise environment.
作者 贾亮 田宇翔
出处 《电声技术》 2014年第2期45-49,共5页 Audio Engineering
基金 辽宁省教育厅基金项目(L2010420)
关键词 局部多项式傅里叶变换 盲源分离 联合对角化 语音信号 LPFT blind separation joint approximate diagonalization speech signal
  • 相关文献

参考文献10

  • 1DOUGLAS S C, GUlrI'A M, SAWADA H, et al. Spatio - temporal fastICA algorithms for the blind separation of convo- lutive mixtures [ J ]. IEEE Transactions on Audio, Speech, and I-anguage Processing, 2007 ( 15 ) : 1511 - 1520. 被引量:1
  • 2TICHAVSKY P, YEREDOR A, KOLDOVSKY Z. A fast as- ymptotically efficient algorithm for blind separation of a line- ar mixture of block-wise stationary autoregressive processes [ C]//Proc. Acoustics, Speech and Signal Processing, 2009, ICASSP 2009. IEEE International Conference. Taipei: Is. n. ] ,2009:3133 -3136. 被引量:1
  • 3WANG Yujing , YU Fengqin. A blind separation algorithm based on WVD and JADE for speech signal[ C]//Proc. Im- age and Signal Processing (CISP), 4th International Con- gress on. Shanghai: [ s. n. ] ,2012:6 -9. 被引量:1
  • 4WEN Yuanyuan, CHEN Hao. A new algorithm based on joint diagonalization by the householder transformation for convolutive blind separation [ C ]//Proc. Computer Science and Automation Engineering (CSAE), 2011 IEEE Interna- tional Conference on. Shanghai : [ s. n. ] ,2011:348 - 352. 被引量:1
  • 5LI X, BI G, STANKOVIC S. Iz~cal Polynomial Fourier transform:A review on recent developments and applications [ J ]. Signal Processing, 2011 (91 ) : 1370 - 1393. 被引量:1
  • 6IGOR D. Robust adaptive local polynomial Fourier transform [J]. IEEE Signal Processing Letters,2004,112(2):201 -204. 被引量:1
  • 7李新波..基于LPFT的多项式相位阵列信号处理理论与方法研究[D].吉林大学,2009:
  • 8THOMAS F Q. Discrete-time speech signal processing:prin-ciplesandpractice[M].赵胜辉,译.北京:电子工业出版社,2004. 被引量:1
  • 9KLEINSTEUBER M, HAO S. Uniqueness analysis of non-u- nitary matrix joint diagonalization [ J ]. Signal Processing, IEEE Transactions on. ,2013(61) :1786-1796. 被引量:1
  • 10CHABRIEL G, BARRERE J. A direct algorithm for non- orthogonal approximate joint diagonalization [ J ]. IEEE Transactions on Signal Processing,2012(60) :39 -47. 被引量:1

同被引文献17

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部