摘要
利用Green公式、Sobolev嵌入不等式及Yong不等式 ,给出带有耗散项的平衡态Volterra Lotka模型解的先验估计 .在此基础上 ,用不动点指标理论计算了平凡解和半平凡解的不动点指标 ,从而得到当平凡解和半平凡解的不动点指标之和不等于
By using Green’s formula, Sobolev inequality and Yong inequality, a piori estimate for the solutions of the Volterra-Lotka model of steady state with diffusion is given. Using the fixed point index theory,the indices of the trival and semi-trival solutions are computed. Form this,the coexistence of the model is proved as the sum of the indices of the trival and semitrival solutions is not equal to l.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2000年第12期80-83,共4页
Journal of Xi'an Jiaotong University
基金
国家重大基础研究专项经费资助项目(G199032801)
国家自然科学基金资助资助项目(19971067)
陕西省自然科学基金资助项目(99S105)