期刊文献+

烯草酮合成工艺热危险性及动力学 被引量:5

Thermal Hazard and Reaction Kinetics for Synthesis Process of Clethodim
原文传递
导出
摘要 [目的]通过差示扫描量热-热重(DSC-TG)分析和反应量热(RC1),开展烯草酮合成工艺的热危险性和反应动力学研究。[结果]中间体O-3-氯-2-丙烯基羟胺分解温度为106.9℃,5-(2-乙硫基丙基)-2-丙酰基-3-羟基-2-环己烯-1-酮的吸热分解温度为273.3℃,烯草酮表现为吸热和放热2段分解过程,放热和吸热分解温度分别为120、268.2℃。烯草酮合成反应摩尔放热量为-49.03 kJ/mol,绝热温升为21.27 K,反应存在大量热累积。热失控条件下,反应体系最高温度(MTSR)为54.27℃,小于中间体、产品的分解温度和体系沸点,合成工艺的热危险性较小。烯草酮合成反应对O-3-氯-2-丙烯基羟胺的反应级数为1.21。 [Aims] The thermal hazards and kinetics of synthesis reaction were tested by using Differential Scanning Calorimetry-Thermogravimetric analyzer (DSC-TG) and Reaction Calorimeter (RC1). [Results] The results indicated that the endothermic decomposition temperature of O-(3-chloro-2-propenyl)hydroxylamine is 106.9 ℃, and 5-(2-(ethylthio)propy)-2-propionyl-3-hydroxy-2-cyclohexen-l-one is 273.3 ℃, the exothermic and endothermic decomposition temperature of ctethodim is 120 and 268.2 ℃ respectively. The exothermic energy of the synthesis reaction is -49.03 kJ/mol, the adiabatic temperature rise is 21.27 K, and the reaction has a lot of thermal accumulation. Under the thermal runaway condition, the maximum temperature of the synthesis reaction (MTSR) is 54.27 ℃, which is below the thermal decomposition temperature of intermediate, product and the boiling point of the reaction system. This process has lower thermal hazard. The synthesis reaction order is 1.21 for O-(3-chloro-2-propenyl)hydroxylamine.
出处 《农药》 CAS CSCD 北大核心 2014年第2期99-101,125,共4页 Agrochemicals
关键词 烯草酮 绝热温升 分解温度 热危险性 动力学 clethodim adiabatic temperature rise decomposition temperature thermal hazards kinetic
  • 相关文献

参考文献10

二级参考文献68

共引文献80

同被引文献34

  • 1杨玉廷,高爽,张宗俭,林长福,马宏娟,李鸣,孙宝祥.除草剂烯草酮的应用技术研究[J].农药,2005,44(4):186-189. 被引量:24
  • 2郭林华,王鹏.除草剂烯草酮的合成研究进展[J].现代农药,2006,5(1):5-8. 被引量:8
  • 3鲁梅,王金信,连玉朱,王利平,李浙江,刘伟,董晓雯.油酸甲酯助剂对除草剂的增效作用及其对大豆苗期安全性测定[J].山东农业大学学报(自然科学版),2006,37(1):31-34. 被引量:16
  • 4WESTERTERP K R, MOLGA E J. Safety and Runaway Prevention in Batch and Semibatch Reactors-A Review [J]. Chemical Engineering Research and Design, 2006, 7(84): 543-552. 被引量:1
  • 5TOWNSEND D I, TOU J C. Thermal Hazard Evaluation by an Accelerating Rate Calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30. 被引量:1
  • 6SUN J H, LI X R, HASEGAWA K, et al. Thermal Hazard Evaluation of Complex Reactive Substance Using Calorimeters and Dewar Vessel[J]. Journal of Thermal Analysis and Calorimetry, 2004, 76(3): 883-893. 被引量:1
  • 7SERRA E, NOMEN R, SEMPERE J J. Maximum Temperature Attainable by Runaway of Synthesis Reaction in Semibatch Processes[J]. Journal of Loss Prevention in the Process Industries, 1997, 10(4): 211-215. 被引量:1
  • 8STOESSEL F. Thermal Safety of Chemical Processes-Risk Assessment and Process Design[M]. Wiley-VCH, 2008: 63. 被引量:1
  • 9STOESSEL F. What is Your Thermal Risk? [J]. Chemical Engineering Progress, 1993, 89(10): 68-75. 被引量:1
  • 10STOESSEL F. Design Thermally Safe Semi-batch Reactors [J]. Chemical Engineering Progress, 1995, 91(9): 46. 被引量:1

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部