摘要
In this work, the resistive switching behaviors of ferroelectrictric BaTiO3/La0.67Sr0.33MnO3 .heterostructures de- posited by pulsed laser deposition are investigated. The BaTiO3 films show both well-established P-E hysteresis loops, and asymmetric reversible diode-like resistive switching behaviors, involving no forming process. It is found that both the ON/OFF ratio and the stability of resistive switching are substantially dependent on operation voltage (Vmax). At a Vmax of 15 V, a large ON/OFF resistance ratio above 1000 is obtained at a Vmax of 15 V, which is able to maintain stability up to 70-switching cycles. The above resistive switching behaviors can be understood by modulating interface Schottky barriers as demonstrated by I-V curve fitting.
In this work, the resistive switching behaviors of ferroelectrictric BaTiO3/La0.67Sr0.33MnO3 .heterostructures de- posited by pulsed laser deposition are investigated. The BaTiO3 films show both well-established P-E hysteresis loops, and asymmetric reversible diode-like resistive switching behaviors, involving no forming process. It is found that both the ON/OFF ratio and the stability of resistive switching are substantially dependent on operation voltage (Vmax). At a Vmax of 15 V, a large ON/OFF resistance ratio above 1000 is obtained at a Vmax of 15 V, which is able to maintain stability up to 70-switching cycles. The above resistive switching behaviors can be understood by modulating interface Schottky barriers as demonstrated by I-V curve fitting.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos.51072061,51031004,and 51272078)
the Program for Changjiang Scholars and Innovative Research Team in University
the Priority Academic Program Development of Jiangsu Higher Education Institutions,China