期刊文献+

Physiological and Antioxidant Responses of Germinating Mung Bean Seedlings to Phthalate Esters in Soil 被引量:8

Physiological and Antioxidant Responses of Germinating Mung Bean Seedlings to Phthalate Esters in Soil
原文传递
导出
摘要 Single phytotoxicity of two representative phthalate esters(PAEs),di-n-butyl phthalate(DnBP)and bis(2-ethylhexyl)phthalate(DEHP),was tested in mung bean(Vigna radiata)seedlings germinated for 72 h in soils spiked with varying concentrations(0-500 mg kg^(-1)soil)of DnBP or DEHP.PAEs added at up to 500 mg kg^(-1)soil exerted no significant effect on germination but both pollutants significantly inhibited root elongation(P<0.01),DEHP inhibited shoot elongation(P<0.01)and DnBP depressed biomass on a fresh weight basis(P<0.05).Seedling shoot and root malondialdehyde(MDA)contents tended to be stimulated by DnBP but inhibited by DEHP.However,increases in superoxide dismutase,peroxidase,ascorbate peroxidase and polyphenol oxidase activities,as well as glutathione(GSH)content,were induced at higher concentrations(e.g.,20 mg kg^(-1))of both compounds.Accumulation of proline in both roots and shoots and the storage compounds,such as free amino acids and total soluble sugars,in whole plant was induced under the stress exerted by both PAEs.The general responses of mung bean seedlings indicated higher toxicity of DnBP than DEHP on primary growth,during which root elongation was a more responsive index.MDA and GSH were more sensitive parameters in the roots than in the shoots and they might be recommended as physiologically sensitive parameters to assess the toxicity of PAE compounds in soils in future long-term studies. Single phytotoxicity of two representative phthalate esters (PAEs), di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), was tested in mung bean (Vigna radiata) seedlings germinated for 72 h in soils spiked with varying concentrations (0-500 mg kg-1 soil) of DnBP or DEHP. PAEs added at up to 500 mg kg-1 soil exerted no significant effect on germination but both pollutants significantly inhibited root elongation (P 〈 0.01); DEHP inhibited shoot elongation (P 〈 0.01) and DnBP depressed biomass on a fresh weight basis (P 〈 0.05). Seedling shoot and root malondialdehyde (MDA) Contents tended to be stimulated by DnBP but inhibited by DEHP. However, increases in superoxide dismutase, peroxidase, ascorbate peroxidase and polyphenol oxidase activities, as well as glutathione (GSH) content, were induced at higher concentrations (e.g., 20 mg kg-1) of both compounds. Accumulation of proline in both roots and shoots and the storage compounds, such as free amino acids and total soluble sugars, in whole plant was induced under the stress exerted by both PAEs. The general responses of mung bean seedlings indicated higher toxicity of DnBP than DEHP on primary growth, during which root elongation was a more responsive index. MDA and GSH were more sensitive parameters in the roots than in the shoots and they might be recommended as physiologically sensitive parameters to assess the toxicity of PAE compounds in soils in future long-term studies.
出处 《Pedosphere》 SCIE CAS CSCD 2014年第1期107-115,共9页 土壤圈(英文版)
基金 Supported by the National Environmental Protection Special Fund for Scientific Research on Public Causes of China(Nos.201109018and 2010467016)
关键词 GLUTATHIONE MALONDIALDEHYDE PHYTOTOXICITY root elongation storage compounds 邻苯二甲酸酯 绿豆幼苗 抗氧化反应 土壤 发芽 抗坏血酸过氧化物酶 生理 超氧化物歧化酶
  • 相关文献

参考文献5

二级参考文献88

共引文献131

同被引文献91

引证文献8

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部