摘要
针对颗粒介质力学特性的颗粒尺度效应研究,选用土矿物颗粒制备不同颗粒尺度的抗剪试样,进行一系列直剪快剪和三轴抗剪试验,测得了不同颗粒粒径和体分比试样的变形曲线及剪应力强度;基于颗粒间微观作用力与重力比值和胞元体模型,首次从微观和细观角度解释颗粒尺度效应的物理机理.结果表明,随着介质中粗颗粒的比例增加和粒径减小,介质变形特性增强,剪应力强度也随之提高;体分比对变形和强度特性的影响比粒径的影响更加显著.基于介质特性尺度效应物理机理分析,提出衡量介质颗粒聚集和摩擦效应的微重比判别参数以及应变梯度和变形协调微裂纹引起颗粒尺度效应的细观机理解释;文中提出的胞元体模型大大减少了颗粒物质体系的计算自由度,为工业和工程设计的计算建模提供一种可行途径.
Shear test samples of different grain sizes are prepared by using mineral particles of soil, and a series of tests of quick direct shear and tri-axial shear are performed to study the size effect of granular media. Deformation curves and shear stress strength are given of test samples with particles of different size and volume fraction. On the basis of the ratio of micro-acting forces between particles to gravity and the cell element model, physical mechanism of grain size effect is, for the first time as far as we know, explained on the micro-level and mecro-level respectively. Test results show that the deformation characteristic of granular media is enhanced and its shear stress strength increases with increasing volume fraction and decreasing of particle size, and the effect of volume fraction on the deformation characteristics and strength is more notable than that of grain size. According to mechanism analysis on size effect, parameter ratio of micro-acting forces to gravity is suggested to assess aggregation and friction effects of particles in the media, and mecro-mechanism is interpreted as strain gradient and micro-cracks of deformation coordination leading to grain size effect. The cell element model presented in this paper can greatly reduce the degrees of freedom of granular media and provides an available way for calculation modeling in industry and engineering design.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第3期266-275,共10页
Acta Physica Sinica
基金
亚热带建筑科学国家重点实验室自主研究(批准号:2012ZA04)资助的课题~~
关键词
颗粒介质
颗粒尺度效应
抗剪试验
物理机理
granular media, grain size effect, shear test, physical mechanism