摘要
针对实际工业过程中存在着约束,提出一种基于遗传算法和非线性规划寻优算法广义预测控制GPC(Generalized Predictive Control)。非线性规划局部搜索能力较强,遗传算法全局搜索能力较强,结合两种算法的优势并引入到广义预测控制的滚动寻优过程中并求得最优控制律。仿真结果表明,该算法提高广义预测控制处理约束的能力,且控制效果良好。
Aiming at the constraint existing in the practical industry process,we propose a generalised predictive control (GPC)which is based on genetic algorithm and nonlinear programming optimisation algorithm.Nonlinear programming optimisation has stronger local search ability while the genetic algorithm has stronger global search ability.The advantages of these two algorithms are combined and introduced to the scrolling optimisation process of GPC and to find the optimal control rule.Simulation results show that the algorithm improves the ability of generalised predictive control in processing the constraint,and has good control effect.
出处
《计算机应用与软件》
CSCD
北大核心
2014年第2期259-262,共4页
Computer Applications and Software
基金
山西省自然科学基金项目(2011011011-1)
关键词
广义预测控制
遗传算法
非线性规划
约束
Generalised predictive control
Genetic algorithm (GA) Nonlinear programming (NP)
Constraint