摘要
研究一类具有无穷时滞的二维Gilpin-Ayala竞争系统,利用比较原理和振荡性原理,证明在一定条件下,系统中一种物种将绝灭,而另一物种趋于稳定.
In this paper, a two dimensinal Gilpin - Ayala competition system with infinite delay is studied. By applying the standard comparison theorem and fluctuation theorem. We prove that one of species of the system will be driven to extinction while the other will stabilize at a certain solution.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期967-971,共5页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金资助项目(2012J05007)
福建省教育厅科研资助项目(JB12160)