期刊文献+

高粘弹性流体磨料光整加工的材料去除率模型 被引量:5

Material Removal Rate Model of High Viscoelastic Fluid Abrasive Finishing
下载PDF
导出
摘要 基于磨料流加工介质的高粘弹性,在分析磨粒所受法向力和参与切削的磨粒数的基础上,建立了高粘弹性流体磨料光整加工的材料去除率模型。定义了材料去除率模型的切削深度系数,提出了一种用圆管工件测定切削深度系数的方法;并用圆管试件测定了Ⅰ号流体磨料加工45#钢、T8钢和Q235-A材料时的切削深度系数。结果表明:材料去除率与流体磨料对工件的壁面压力、壁滑速度和切削深度系数成正比关系;决定切削深度系数的因素主要有磨粒的粒度、磨粒与载体的混合比和流体磨料的弹性及工件的硬度和表面粗糙度;在流体磨料粘性较高、加工流量较大条件下,可用流体磨料的过流长度和压力来测定切削深度系数。 Based on the high viscoelasticity nature of abrasive flow machining media and through the analysis of the normal forces and the number of cutting abrasive particles, a material removal rate model for finishing processing of high viscoelastic fluid abrasive is established. The definition and test method of cutting depth of material removal model is given. The tests of cutting depth coefficients of No I fluid abrasive for 45 steel, T8 steel and Q235-A material are determined by tubular specimen. The results show that the material removal rate is positive propostional to wall pressure, wall slip speed and the cutting-depth coefficient. The abrasive particle size, abrasive and carrier mixing ratio, the elasticity of the fluid abrasive, the hardness and surface roughness of the work-piece are the determinative factors influencing cutting depth coefficient. And the cutting depth coefficient can be measured by the length and pressure of fluid abrasive flowing on a work-piece surface under the conditions of relatively high viscosity and large flow capacity.
出处 《兵工学报》 EI CAS CSCD 北大核心 2013年第12期1555-1561,共7页 Acta Armamentarii
基金 山西省自然科学基金项目(2005-1051)
关键词 机械制造工艺与设备 高粘弹性流体磨料 材料去除率模型 切削深度系数 磨料流加工 machinofature technique and equipment high viscoelastic fluid abrasive material removal rate model cutting-depth coefficient abrasive flow machining
  • 相关文献

参考文献12

  • 1Rhoades L. Abrasive flow machining:a case study[J].{H}Journal of Materials Processing Technology,1991,(1):107-116. 被引量:1
  • 2Loveless T R,Williams R E,Rajurkar K P. A study of the effects of abrasive-flow finishing on various machined surfaces[J].{H}Journal of Materials Processing Technology,1994,(1):133-151. 被引量:1
  • 3武利生,李元宗.磨料流加工研究进展[J].金刚石与磨料磨具工程,2005,25(1):69-74. 被引量:34
  • 4Jain R K,Jain V K. Specific energy and temperature determination in abrasive flow machining process[J].{H}INTERNATIONAL Journal OF MACHINE TOOLS & MANUFACTURE,2001,(12):1689-1704. 被引量:1
  • 5Jain R K,Jain V K,Kalra P K. Modeling of abrasive flow machining process:a neural network approach[J].{H}WEAR,1999,(2):242-248. 被引量:1
  • 6Jain V K,Ranganatha C,Muralidhar K. Evaluation of rheological properties of medium for AFM process[J].{H}MACHINING SCIENCE AND TECHNOLOGY,2001,(2):151-170. 被引量:1
  • 7Han C D,Kim K U,Siskovic N. An appraisal of rheological models as applied to polymer melt flow[J].{H}Rheologica Acta,1975,(6):533-549. 被引量:1
  • 8Haan J J,Steif P S. Abrasive wear due to the slow flow of a concentrated suspension[J].{H}WEAR,1998,(2):177-183. 被引量:1
  • 9哈比希;Habig K H;严立.材料的磨损与硬度[M]{H}北京:机械工业出版社,1987. 被引量:1
  • 10Atkins A G,Liu J H. Toughness and the transition between cutting and rubbing in abrasive contacts[J].{H}WEAR,2007,(1):146-159. 被引量:1

二级参考文献58

共引文献43

同被引文献47

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部