期刊文献+

GSwMKnn:基于类别基尼系数子空间的加权互K近邻算法 被引量:1

GSwMKnn:Weighted MKnn Algorithm Based on the Category's Gini Subspace
下载PDF
导出
摘要 在高维数据空间中,存在大量冗余或无用的属性,这使得在子空间中寻找目标类更为有效.为此文章提出基于类别基尼系数子空间的加权互k近邻算法,利用类别基尼系数求出其对应的软子空间并将待分类样本和训练样本投影到各个类别子空间中,再在各软子空间中使用类别基尼系数加权距离互k近邻算法计算出待分类样本在各个子空间的投票权重并叠加,最终得出待分类样本的类标签.在公共数据集上的实验结果验证了该方法的有效性. In high-dimensional data spaces, there exists a large number of redundant or useless attributes, and therefore it might be more effective to find target class in their subspaces. A weighted MKnn algorithm based on the Category's Gini Coefficient subspace is proposed in this paper. Using the Category's Gini Coefficient, the algorithm firstly calculates the corresponding soft subspaces, and projects the training and testing samples onto each category subspaces. Secondly, it calculates the vote weights of unclassified samples on each subspace by the weighted MKnn algorithm and then accumulates them. Finally, it obtains the category labels of unclassified samples. The experimental results on some UCI public datasets demonstrate the effectiveness of the proposed method.
出处 《计算机系统应用》 2014年第2期137-141,132,共6页 Computer Systems & Applications
基金 国家自然科学基金(61070062) 福建高校产学合作科技重大项目(2010H6007) 福建省教育厅B类项目(JB12201)
关键词 类属性数据 子空间 互k-近邻 基尼系数 nominal data subspace mutual k-nearest neighbor Gini index
  • 相关文献

参考文献19

  • 1Mitchell TM. Machine Learning McGraw-Hill Companies Inc, 1997: 230-247. 被引量:1
  • 2Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans. on Information Theory, 1967, J3(1): 21-27. 被引量:1
  • 3Liu HW, Zhang SC. Noisy data elimination using mutual k-nearest neighbor for classification mining. The Journal of Systems and Software, 2012, 85: 1067-1074. 被引量:1
  • 4Yang Q, Wu X. 10 challenging problems in data mining research. International Journal of Information Technology and Decision Making, 2006, 5(4): 597-604. 被引量:1
  • 5Guo G.D, Wang H, Bell D,et al. KNN model-based approach in classification. Proc of the OTM Confederated International Conference on CoopIS, DOA, and OD BASE. Atania, Italy. 2003. 986-996. 被引量:1
  • 6Guo G.D, Wang H, Bell D,et al. Using KNN model for automatic text categorization. Soft Computing: A Fusion of Foundations, Methodologies and Application, 2006, 10(5): 423-430. 被引量:1
  • 7陈黎飞,郭躬德.最近邻分类的多代表点学习算法[J].模式识别与人工智能,2011,24(6):882-888. 被引量:18
  • 8孙彩堂,张利彪,周春光,刘小华.加权K近邻和加权投票相结合的虹膜识别算法[J].小型微型计算机系统,2010,31(9):1846-1849. 被引量:1
  • 9Gao Y, Zheng B, Chen G., Li Q, Chen C, Chen G.. Efficient mutual nearest neighbor query processing for moving object trajectories. Information Sciences, 2010, 180:2170-2195. 被引量:1
  • 10Liu B, Pan J, McKay RI. Entropy-based metrics in swarm clustering. International Journal of Intelligent Systems, 2009,(24): 989-1011. 被引量:1

二级参考文献106

共引文献72

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部