期刊文献+

WOD样本下密度函数核估计的强相合性 被引量:9

The strong consistency for the kernel-type density estimation in the case of widely orthant dependent samples
下载PDF
导出
摘要 设{Xn,n≥1}是同分布的WOD随机变量序列,具有共同的密度函数f(x),利用WUOD序列的指数不等式,在适当条件下获得了WOD样本下密度函数核估计的强相合性. On the supposition that { Xn, n≥ 1 } are identically distributed widely orthant dependent random variable sequences, with a common density function f(x). The strong consistency of the kernel estimator of the density function for widely orthant dependent samples proves to be right under suitable conditions by using widely upper or thant dependent exponential inequality.
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第1期26-28,34,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(11061012) 广西省自然科学基金资助项目(2012GXNSFAA053010) 广西研究生教育创新计划项目(2011105960202M32)
关键词 WOD样本 密度函数核估计 相合性 widely orthant dependent samples kernel estimator of the density function consistency
  • 相关文献

参考文献13

  • 1PARZEN E. On estimation of a probability density function and mode[J]. Ann Math Statist, 1962,33(3) : 1065-1076. 被引量:1
  • 2陈希孺,柴根象编著..非参数统计教程[M].上海:华东师范大学出版社,1993:333.
  • 3林正炎.相依样本情形时密度的核估计[J].科学通报,1983,28(12):709-713. 被引量:1
  • 4韦来生.NA样本概率密度函数核估计的相合性[J].系统科学与数学,2001,21(1):79-87. 被引量:35
  • 5WANG Kaiyong, WANG Yuebao, GAO Qingwu. U- niform asymptoties for the finite-time ruin probability of a dependent risk model with a constant interest rate [J].Methodoi Comput Appi Probab, 2013,15 ( 1 ) : 109- 124. 被引量:1
  • 6BLOCK H W,SAVITS T H, SHAKED M. Some con- cepts of negative dependenee[J]. The Annals of Proba- bility, 1982,10(3) : 765-772. 被引量:1
  • 7WU Qunying. Complete convergence for negatively de- pendent sequences of random variables[J]. Journal of Inequalities and Applications, Vol. 2010, Article ID 507293,10pages, doi: 10. 1155/2010/507293. 被引量:1
  • 8SUNG Soo Hak. On the exponential inequalities for negatively dependent random variables[J]. Journal of Mathmatical Analysis and Applications, 2011,381 ( 2 ) : 538-545. 被引量:1
  • 9JOAG-DEV K, PROSCHAN F. Negative association of random variables with application [J]. The Annals of Statistics, 1983,11 : 286- 295. 被引量:1
  • 10LIU Li. Precise large deviations for dependent ran dora variables with heavy tails[J]. Statistics and Prob- ability Letters,2009,79(9) : 1290-1298. 被引量:1

二级参考文献14

  • 1苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 2BOZORGNIA A, PATTERSON R F,TAYLOR R L. Limit theorems for ND r. v. 's[R]. Technical Report, Athens: University of Georgia, 1993. 被引量:1
  • 3EBRAHIMI N, GHOSH M. Multivariate negative dependence[J]. Comm Statist Theory Methods A10,1981, 10 (4) :307-337. 被引量:1
  • 4TAYLOR R L, PATTERSON R F, BOZORGNIA A. A strong law of large numbers for arrays of rowwise negatively dependent random variables[J]. Stoeh Anal Appl, 2002,20 : 643 - 656. 被引量:1
  • 5OLEG KLESOV, ANDREW ROSALSKY, ANDREI I VOLODIN. On thealmost sure growth rate of sums of lower negatively dependent nonnegative random variables[J]. Statistics and Probability Letters, 2005,71 (2) .193-202. 被引量:1
  • 6KUCRMASZEWSKA A. The strong law of large numbers for depend random variables[J]. Statistiscs and Probability Letters, 2005,71 (4) : 1 - 10. 被引量:1
  • 7SOO HAK SUNG. An exponential inequality for negatively associated random variables[J/OL]. Journal of Inequalities and Applications, [2009-05-07]. http:// www. hindawi, com/journals/jia/2009/649427, html. 被引量:1
  • 8ASADIAN N, FAKOOR V, BOZORGNIA A. Rosenthal's type inequalities for negatively orthant dependent random variables[J].Journal of the Iranian Statistical Society, 2006,5:69-75. 被引量:1
  • 9OLIVEIRA P D. An exponential inequality for associated variables [J]. Statistics and Probability Letters, 2005,73 : 189 - 197. 被引量:1
  • 10Pan J M,应用概率统计,1997年,13卷,183页 被引量:1

共引文献37

同被引文献57

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部