期刊文献+

气相中HRnCCH和X(X=H_2O,NH_3)反应机理的理论研究

Theoretical Investigation on the Reaction Between HRnCCH and X(X= H_2O,NH_3) in Gas Phase
下载PDF
导出
摘要 在CCSD(T)//MP2/aug-cc-pVTZ-pp理论水平上,研究了HRnCCH与大气中H2O及NH3分子反应的机理,反应主要包括HRnCCH与HRnOH及HRnNH2之间的转化、H2O和NH3在HRnCCH中的碳碳三键上的加成反应以及HRnCCH与双分子水反应等.结果表明,HRnCCH与H2O反应生成HCCH和HRnOH及HRnCCH与NH3反应生成HCCH和HRnNH2的能垒分别为54.1和75.2 kJ/mol,而生成HRnCHC(OH)H,HRnC(OH)CH2,HRnCHC(NH2)H和HRnC(NH2)CH2的活化能分别为219.6,220.5,174.4和182.4kJ/mol,此结果表明HRnCCH反应性较弱且是稳态存在的.此外,在HRnCCH与H2O反应中加入单个水分子,仍然生成HRnCHC(OH)H,但反应活化能却降低了96.4 kJ/mol,说明水分子对该反应有明显的催化作用. The reaction mechanisms of HRnCCH with H2 O, NH3 were explored at the CCSD( T)//MP2/aug-cc-pVTZ-pp level of theory. This investigation involved the conversion between HRnCCH and HRnOH, HRnCCH and HRnNH2 , and the water, water dimer, and ammonia gas molecule addition to the C≡C bond in the HRnCCH, respectively. The calculated results show that the HCCH+HRnOH is produced by the reaction of HRnCCH+H2 O with an activated barrier of 54.1 kJ/mol and HCCH+HRnNH2 is yielded via the reaction of HRnCCH+NH3 with a estimated barrier of 75.2 kJ/mol. However, the formations of HRnCHC ( OH ) H, HRnC(OH)CH2, HRnCHC(NH2)H and HRnC(NH2)CH2 have the respective barrier of 219.6, 220.5, 174.4 and 182.4 kJ/mol. Therefore, the reactivity of HRnCCH is of quite weakness at the environments in-vestigated herein, which indicates that HRnCCH could be existed under these conditions. In addition, the second water molecule introduced into the HRnCCH+H2 O reaction leads to the remarkable reduction for the barrier of the formation of HRnCHC(OH)H to 123.2 kJ/mol, in which the second water molecule plays a strong catalytic role in the reaction of HRnCCH with water.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第2期344-350,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:41165007) 贵州省科学技术基金(批准号:黔科合J字[2011]2107 黔科合J字[2012]2189) 中国科学院大气成分与光学重点实验室开放课题(批准号:JJ1107) 贵州大学研究生创新基金(批准号:2013023)资助~~
关键词 HRnCCH 量子化学计算 反应机理 氨气 HRnCCH Quantum chemical calculation Reaction mechanism Water Ammonia gas
  • 相关文献

参考文献40

  • 1Bartlett N.查看详情[J],Proc Chem Soc1962218. 被引量:1
  • 2Pettersson M;Lundell J;R?s?nen M.查看详情[J],{H}Journal of Chemical Physics19956423-6431. 被引量:1
  • 3Pettersson M;Lundell J;R?s?nen M.查看详情[J],{H}Journal of Chemical Physics1995(1):205-211. 被引量:1
  • 4Khriachtchev L;R?s?nen M;Gerber R B.查看详情[J],{H}Accounts of Chemical Research2009(1):183-191. 被引量:1
  • 5Yen S Y;Mou C H;Hu W P.查看详情[J],{H}CHEMICAL PHYSICS LETTERS2003(5/6):606-611. 被引量:1
  • 6Khriachtchev L;Pettersson M;Runeberg N;Lundell J R?s?nen M.查看详情[J],{H}NATURE2000874-876. 被引量:1
  • 7Pettersson M;Khriachtchev L;Lignell A;R?s?nen M Bihary Z Gerber R B.查看详情[J],{H}Journal of Chemical Physics20022508-2515. 被引量:1
  • 8Pettersson M;Khriachtchev L;Lundell J;Jolkkonen S R?s?nen M.查看详情[J],{H}Journal of Physical Chemistry A20003579-3583. 被引量:1
  • 9Khriachtchev L;Pettersson M;Lundell J;R?s?nen M.查看详情[J],{H}Journal of Chemical Physics20017727-7730. 被引量:1
  • 10Feldman V I;Sukhov F F;Orlov A Y.查看详情[J],{H}CHEMICAL PHYSICS LETTERS1997507-512. 被引量:1

二级参考文献25

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部