期刊文献+

基于中心自动融合的多尺度可能性聚类算法 被引量:1

Multi-scale Possibilistic Clustering Algorithm Based on Automatic Center Merging
下载PDF
导出
摘要 针对可能性聚类对初始化参数设置依赖性较强的问题,提出一种基于中心自动融合的可能性聚类算法,并证明了算法中尺度因子的多尺度性质.该算法通过建立中心的相关性判定准则,根据数据自身分布特点动态调整聚类数目与结构,通过引入尺度参数实现对数据的多分辨率分析.与传统的模糊和可能性聚类算法相比,该算法摆脱了对聚类数目及初始化中心或隶属度矩阵设置的依赖性,易于控制.人造数据和真实数据实验结果表明,该算法能自动确定数据中不同尺度下的聚类结构,具有识别不同大小聚类结构的能力. To deal with the parameter sensitivity problem of possibilistic c-means clustering algorithm, a new possibilistic clustering algorithm based on center merging was proposed.The cluster number and structure were dynamically adj usted according to the data distribution.The algorithm has the ability to execute multi-scale analysis task for the given data set by means of adj usting the values of the scale factor.The theorems were also given that were proven to be used to analyze the multi-scale property of the algorithm.Compared with the traditional fuzzy or possibilistic clustering algorithms, the proposed algorithm avoids its dependence on the initial conditions of centers,cluster number and membership matrix,which makes it easy to control.Synthetic and real data experimental results show that the algorithm can be used to detect the cluster structures of the data set from different scales,and to find the clusters with different sizes.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第1期86-92,共7页 Journal of Jilin University:Science Edition
基金 国家科技支撑计划项目(批准号:2009BAE69B02) 吉林省教育厅"十二五"科学技术研究项目(批准号:2013-420) 吉林农业大学科研启动基金(批准号:201135) 长春理工大学青年基金(批准号:XQNJJ-2011-10)
关键词 可能性聚类 多尺度 中心融合 初始化敏感性 possibilistic clustering multi-scale center merging initialization sensitivity
  • 相关文献

参考文献13

  • 1Duda R O,Hart P E. Pattern Classification and Scene Analysis[M].{H}New York:Wiley,1973. 被引量:1
  • 2Jain A K,Duin R P W,Mao J. Statistical Pattern Recognition:A Review[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,(01):4-37. 被引量:1
  • 3Bezdek J C. Pattern Recognition with Fuzzy Obj ective Function Algorithms[M].{H}New York:Plenum Press,1981. 被引量:1
  • 4Krishnapuram R,Keller J M. A Possibilistic Approach to Clustering[J].{H}IEEE Transactions on Fuzzy Systems,1993,(02):98-110. 被引量:1
  • 5Krishnapuram R,Keller J M. The Possibilistic c-Means Algorithm:Insights and Recommendations[J].{H}IEEE Transactions on Fuzzy Systems,1996,(03):385-393. 被引量:1
  • 6Yang M S,Lai C Y. A Robust Automatic Merging Possibilistic Clustering Method[J].{H}IEEE Transactions on Fuzzy Systems,2011,(01):26-41. 被引量:1
  • 7Kushnir D,Galun M,Brandt A. Fast Multiscale Clustering and Manifold Identification[J].{H}Pattern Recognition,2006,(10):1876-1891. 被引量:1
  • 8Dave R N,Krishnapuram R. Robust Clustering Methods:A Unified View[J].{H}IEEE Transactions on Fuzzy Systems,1997,(02):270-293. 被引量:1
  • 9胡雅婷,左春柽,曲福恒,杨洋.多尺度可能性聚类算法[J].长春理工大学学报(自然科学版),2010,33(4):124-127. 被引量:3
  • 10Pal N R,Pal K,Keller J M. A Possibilistic Fuzzy c-Means Clustering Algorithm[J].{H}IEEE Transactions on Fuzzy Systems,2005,(04):517-530. 被引量:1

二级参考文献11

  • 1Bezdek JC.Pattern recognition with fuzzy objective func tion algorithms[M].New York:Plenum Press,1981. 被引量:1
  • 2Krishnapuram R,Keller JM.A possibilistic approach to clustering[J].Ieee Transactions on Fuzzy Systems,1993,1(2):10.1109/1191.227387. 被引量:1
  • 3Krishnapuram R,Keller J.The possibilistic c-means algo rithm:insights and recommendations[J].Ieee Transac tions on Fuzzy Systems,1996,4(3):385-393. 被引量:1
  • 4Bami M,Cappellini V,Mecocci A.Comments on "a pos sibilistic approach to clustering[J].Ieee Transactions on Fuzzy Systems,1996,4(3):393-396. 被引量:1
  • 5Zhang JS,Leung YW.Improved possibilistic C-means clustering algorithms[J].Ieee Transactions on Fuzzy Sys tems,2004,12(2):209-217. 被引量:1
  • 6Pal NR,Pal K,Keller JM,et al.A possibilistic fuzzy c means clustering algorithm[J].Ieee Transactions on Fu zzy Systems,2005,13(4):517-530. 被引量:1
  • 7Yang MS,Wu KL.Unsupervised possibilistic clustering[J].Pattern Recognition,2006,39(1):5-21. 被引量:1
  • 8Hu Y,Qu F,Yang Y,et al.An Improved Possibilistic Clustering Based on Differential Algorithm:proceedings of the 2010 International Workshop on Intelligent System and Applications,2010[C].IEEE. 被引量:1
  • 9Qu F,Ma S,Hu Y.Generalized possibilistic c-means clus tering based on differential evolution algorithm proceed ings of the 2009 International Workshop on Intelligent System and Applications,China,2009[C].IEEE. 被引量:1
  • 10Timm H,Borgelt C,Doring C,et al.An extension to pos sibilistic fuzzy cluster analysis[J].Fuzzy Sets and Sys tems,2004,147(1):3-16. 被引量:1

共引文献2

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部