期刊文献+

人工萤火虫的混合算法实现医药配送中的最佳规划 被引量:2

Hybrid Algorithm Based on Artificial Glowworm Swarm to Achieve Best Solution to Pharmaceutical Distribution Problem
下载PDF
导出
摘要 医药配送规划已成为一项急需解决的重要研究问题。首先分析医药配送问题的特征,针对该问题提出带约束条件的数学模型,确定达到医药配送路径最佳方案的适应值函数,然后提出基于人工萤火虫的混合算法对模型进行寻优。仿真实验显示,该算法可以有效地找到医药配送问题的最佳方案,不仅节约了成本,而且提高了药物配送的运作效率,为解决医药配送问题提供了有价值的参考。 Pharmaceutical distribution planning has become an important research question needed to resolve. Firstly, the characteristics of the pharmaceutical distribution problems were analyzed in this paper. The mathematical model with constraints was put forward and the fitness function to achieve the best solution of the pharmaceutical distribution routing was determined. And then a hybrid algorithm based on artificial glowworm swarm optimization algorithm was proposed to the model optimization. Simulation results show that the proposed algorithm achieves the best solution to pharmaceutical distribution problems effectively. It not only can save costs, but also improve the operational efficiency and provide a valuable reference to solve this kind of problem.
出处 《计算机科学》 CSCD 北大核心 2014年第2期267-269,301,共4页 Computer Science
基金 江苏省科技支撑计划项目-工业部分(BE2011012) 江苏省科技支撑计划项目-工业部分(BE2012184) 国家自然科学基金青年基金项目(81001640)资助
关键词 医药配送 路径规划 萤火虫算法 混合算法 Pharmaceutical distribution,Routing optimization,Artificial glowworm swarm algorithm, Hybrid algorithm
  • 相关文献

参考文献17

二级参考文献129

共引文献363

同被引文献25

  • 1Agrawal S, Silakari S. FRPSO: fletcher-reeves based particle swarm optimization for multimodal function op timization [J]. Soft Computing, 2014, 18 ( 11 ): 2227-2243. 被引量:1
  • 2Kumar V, Chhabra J K, Kumar D. Parameter adaptive harmony search algorithm for unimodal and muhimodal optimization problems [J]. Journal of Computational Science, 2014, 5(2): 144-155. 被引量:1
  • 3Liang Jing, Qu Boyang, Mao Xiaobo, et al. Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization [J]. Neumcomputing, 2014, 137. 252-260. 被引量:1
  • 4Liang Yong, Leung K S. Genetic algorithm with adap- tive elitist-population strategies for multimodal function optimization [J]. Applied Soft Computing, 2011, 11 (2) : 2017-2034. 被引量:1
  • 5Qu Boyang, Suganthan P N, Das S. A distance-based locally informed particle swarm model for multimodal optimization [J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387-402. 被引量:1
  • 6Krishnanand K N, Ghose D. Detection of multiple source locations using a glowworm metaphor with appli- cations to collective robotics [C]// Swarm Intelligence Symposium, Pasadena, California. IEEE, 2005:84-91. 被引量:1
  • 7Krishnanand K N, Ghose D. Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications [J]. Multiagent and Grid Systems, 2006, 2(3): 209-222. 被引量:1
  • 8Krishnanand K N, Ghose D. Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations [J]. Robotics and Autonomous Sys- tems, 2008, 56(7).. 549-569. 被引量:1
  • 9Krishnanand K N, Ghose D. Glowworm swarm optimi- zation for simultaneous capture of multiple local optima of multimodal functions [J]. Swarm Intelligence, 2009, 3(2) : 87-124. 被引量:1
  • 10Zhou Yongquan, Zhou Guo, Zhang Junli. A hybrid glowworm swarm optimization algorithm to solve con- strained multimodal functions optimization [J]. Optimi- zation, 2015, 64(4) :1057- 1080. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部